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Abstract

The aim of this paper is that of studying a notion of
independence for imprecise probabilities which is
essentially based on the intuitive meaning of this
concept. This is expressed, in the case of two events, by
the reciprocal irrelevance of the knowledge of the value
of each event for evaluating the other one, and has been
termed epistemic independence. In order to consider
more general situations in the framework of coherent
imprecise probabilities, a definition of (epistemic)
independence is introduced referring to arbitrary sets of
logically independent partitions. Logical independence is
viewed as a natural prerequisite for epistemic
independence. It is then proved that the definition is
always consistent, its relationship with the factorization
rule is analysed, and some of its more relevant
implications are discussed.

Keywords. Coherent imprecise probabilities, (epistemic)
independence, logical independence, factorization.

1 Introduction

Let 4, B be two non-impossible events and m a measure
of uncertainty on {4, B}. Then it is quite intuitive to call
B irrelevant to A (with respect to the given m) if the
knowledge of the logical value of B (either that B is true
or that B is false) does not alter our evaluation on the
uncertainty of A, which remains still equal to m(4). A
natural way of introducing independence between 4 and
B (under m) is then that of identifying it with the mutual
irrelevance of 4 to B and of B to 4. When m is a coherent
imprecise probability, this is the notion of epistemic
independence for two events given by Walley in [11],
where the concept is also generalised to two partitions or
two independent experiments.

The main purpose of this paper is to extend the concept
of epistemic independence, using the definition 2.3.2 of
coherence due to Williams, to an arbitrary family of

(finite or infinite) logically independent partitions of the
certain event (2 (def. 3.1), to prove its consistency, i.e. to
show that there always exist (coherent) imprecise
probabilities that satisfy the conditions required by this
definition (theor. 3.4), and to discuss some of its
implications in sects. 3.6, 4, 5.

Operationally, the usual approach to (unconditional or
conditional) independence under a given uncertainty
measure aims at establishing some algebraic condition,
like the factorization property, which greatly simplifies
the computations and the underlying models in most
applications, from sampling to bayesian networks.

However this approach and that based on irrelevance do
not perfectly overlap. This does not even happen in the
simplest case when m is a precise probability measure P:
for instance, identifying independence of 4, B with the
property P(A A B) = P(A)P(B) would imply that 4 is
independent from itself if P(4) = 1, 4 and B are at any
rate independent if P(4) = 0 or P(B) = 0 (other interesting
examples may be found in [1], [2], [4] p. 274, [11]).
Things may become more complicated with other
uncertainty measures (see, for instance, [3], [5]). In
particular, several concepts of independence have been
proposed for imprecise probabilities, among them the
sensitivity analysis approach (we postpone a comment on
it to sect. 3.5) and those in [3].

In our framework, (epistemic) independence necessarily
implies, but is not equivalent to, a ‘weak’ factorization
property (prop. 3.6.1); anyway ‘strong’ factorization can
always be imposed, has a special probabilistic meaning
and may be a reasonable choice on many occasions, as
shown in sect. 3.6.3.

Another question is what does the proposed
independence condition imply when extending the
imprecise probability to larger sets of events, in
particular in terms of independence propagation.
Although a full understanding of the matter requires
further investigation, some special interesting cases are



discussed in sects. 4.1.2, 4.1.3 and 4.2.

2 Preliminaries

We recall in this section the basic definitions and well-
known results which will be used in the sequel.

2.1 Notation

If A is an event, A° is its negation, /(4) is the indicator
function of A4 (i.e. (4) = 1 if A is true, /(4) =0 if A is
false).

A’ indicates an event which may be either 4 or A% any
expression including 4’ (for instance (i) and (ii) at the
beginning of sect. 3) is meant to hold when replacing A’
with 4 or A°.

0 is the certain event, £Jthe impossible one. Following
the logical interpretation of events, we write A, v, = to
denote the logical product, logical sum and implication
of events (corresponding, respectively, to n, U, and € or
c in the set-theoretic approach).

2.2 Partitions and logical independence

A partition P of the certain event €2 is an exhaustive set
of pairwise disjoint events, called constituents, which
might in general include also & The non-impossible
constituents of 2 are called atoms. Defining 77 =
2 — { &}, partition #7 is made up of atoms only. None of
the partitions to be considered in the sequel will be the
null partition 2, = {€2}.

Denote with ,4?2) the algebra of the events logically
dependent on 2, i.e. the set formed by the events which
are logical sums of constituents of 2 (4P) is the power
set of 2 in set-theory language); define also #°(P) =
AP) - {}.

Given an arbitrary set of partitions S, the product
partition AS of the partitions of S is the partition whose
constituents are the logical products obtained choosing as
operands a constituent for every partition of S in all
possible ways. Putting S7 = {#% 2 e S}, AS? is the
product partition of the partitions of S, all leaving out £
For instance, if S = {P,,..., Po}, 2. = {4, 4}, 4; # &
A;# Q i=1,...,n, any constituent of AS? = AP, (= AP,
in this case) may be written in the form A, A...A A4,;
some constituents of AS? may in general be impossible.

The partitions of S are logically independent (in short,
lg. i.) if the constituents of AS® are all possible. This
implies in particular that choosing arbitrarily partitions
P1,..., P from S, it is always 4; A..A A, = O,
Y A e @), i=1,...n.

Logical independence is a concept which does not
require any uncertainty evaluation, but should be a

prerequisite for notions of independence involving
uncertainty measures (see sect. 3.1.1).

2.3 Precise and imprecise coherent probabilities
We shall denote with £ an arbitrary (finite or infinite)
non-empty set of conditional events. Then, following [7]

2.3.1 Definition

P(:|) is a coherent conditional probability on £ iff, V m,
YV 4i|Bi € €,V s; € R,i=1,...,m, defining

G =35 (BIIA) - P(A|BY and B= V™ B,

i=1

it is true that max G|B = 0.

The coherence concepts for precise and imprecise
probabilities we recall here require a conditional random
number (G|B in def. 2.3.1, G|B in the next def. 2.3.2) not
to be strictly negative. G can be interpreted as the gain
obtained from an arbitrary finite number of bets, each on
a conditional event in &, and conditioning (G or G) on B
takes account of the fact that the bet on A4;|B; is called off
iff I(B;) = 0, so that it is meaningful to evaluate the gains
only for I(B) = 1; in fact I(B) = 0 identifies the situation
where no bet actually takes place.

It is possible in def. 2.3.1 to bet both in favour (s; > 0)
and against (s; < 0) any A4;|B;, whilst coherence for
imprecise lower probabilities (def. 2.3.2) allows betting
against at most one event, for each choice of the distinct
events 4;|B; € £ appearing in the expression of the gain
G.

2.3.2 Definition

P(|) is a coherent lower probability on £ iff, V m,
V AiBi € € V 5;20,1=0,...,m, defining

G= _%Si I(BYI(AD) — P(AIB)] — sol(Bo)[/(Ag) — P(A|Bo)]

and B= VL) B, itis true that max G|B > 0.

This is the coherence notion by Williams [13], which
coincides with Walley’s definition of coherence in [11],
sect. 7.1.4 (b), if £ is finite, is weaker if £ is infinite
(hence not all of the results in the sequel still apply with
Walley’s definition). See also [6], [10], [11] for other
concepts of coherence with imprecise probabilities.

Upper probabilities P (') are customarily related to
lower probabilities by the conjugacy relation

() P(AB) =1~ P(AYB)

which we assume to hold throughout; hence it is
sufficient to refer to, for instance, lower probabilities
only.



A precise probability P(:|)) on £ is the special case of
imprecise probability where P(4|B) = P(A|B) = P (4|B)
for all events in £ (while in general P(4|B) < P (A|B)).

Further, coherent lower probabilities can be characterized
as lower envelopes of coherent precise probabilities [13]:

2.3.3 Lower envelope theorem

P(:|) is a coherent lower probability on £ iff there exists
a non-empty set M of coherent conditional probabilities
on & such that

()  P(A|B)= min {P(AB)},VAB c £ .
PeM

The lower envelope theorem gives in particular an
indirect but useful way of assessing coherent lower
probabilities as lower envelopes of precise probabilities.
P is called the lower envelope of M, and ¥V P € M, it is
P > P, or in words P dominates P.

2.3.4 Extensions of probabilities

Coherent lower or precise probabilities on £ can be
extended to any £ O &, i.e. if P (P) is a coherent lower
(precise) probability on &, then V £ o £ there exists P’
(P?) which is coherent on £ and coincides with P (with
P) on & (extension theorem [7], [13]).

Generally, there is no unique way of extending P from £
to £, but there always exists a /east-committal coherent
extension P* which is such that every other coherent
extension P’ on £ dominates it, i.e. P’ > P*.

P* is the natural extension in the terminology of [11]
(actually the concept of natural extension is wider than
the one recalled here, which is at any rate sufficient for
the purposes of this paper).

A different notion — which will be also employed in the
sequel — is that of common extension of imprecise (in
particular, also precise) probabilities. It is used to denote
a mapping P defined on a set S* o WS, and such that the
restriction P| s, of P on each S; is a coherent lower
probability. In general, separate coherence of the lower
probabilities P| s, (each on its domain S;) does not imply
coherence of their common extension P on S* and not
even on US;, apart from some special cases. One such
case is considered in lemma 3.3.

Coherent imprecise probabilities are quite a general tool
in uncertainty reasoning, and include several common
approaches to uncertainty as special cases (see [11], [12]
for a wide discussion). Note further that the set £ is
completely arbitrary, which ensures a great flexibility
too.

It is also important to recall that if {4|B, B} < &, the
assignment P(B) = 0 is in general not ruled out a priori,
i.e. it may be possible to condition on events whose

lower probability is zero. This fact should not be
particularly unusual in practice: for instance, recall that
under a sensitivity analysis interpretation the assessment
P(B)=0, P (B)= o >0 means that the assessor’s feeling
about the ‘correct’ probability of B is just that it cannot
be more than a, but his information is lower vacuous
(entirely vacuous if also o = 1).

3 Independent partitions

Two events A, B (4, B+ & A, B = ) are called in [11]
(epistemically) independent

() if P(4]B)=P), P(4|B)= P(4) (irrelevance
of B to 4) and P(B|4’) = P(B), P (B|4") = P (B)
(irrelevance of A to B); or also

(i) if P4’ | B) = P, P(B* | 4°) = P(B).

Conditions (i) and (ii) are equivalent, assuming that (1)
holds.

We can generalise this definition to an arbitrary number
of partitions, each with an arbitrary cardinality, in the
following way:

3.1 Definition

Let S be a set of logically independent (Ig. i.) partitions,
define the set of events

() @={E|Esn..AEy E € AP, E; e AP),
pi * pl: 1 = 2:---:“: {pla"'a pn} j S})
and let P be a lower probability on ¢.

The partitions of S are epistemically independent, or
simply independent, iff

@) PE|EyA.ANE)=PE)YE|E A . .NE €

In words, the definition requires that the lower
probability of any event E; logically dependent on an
arbitrarily chosen partition in S is independent of the
knowledge of the truth values of any finite logical
product of events logically dependent on partitions in S
other than that of F£,.

3.1.1 The logical independence assumption

We obtain in particular (ii) from def. 3.1 putting S =
{Ps P}, Po = {4, A%}, P, = {B, B°}. Note that logical
independence of 2, and 2, is essential to apply (ii) being
capable of evaluating freely A’ and B’. In fact, if for
instance one constituent of 2, A 2, is impossible, let it be
A A B, it is necessary (to ensure that both the
independence conditions in (ii) and the coherence
requirements P(4 | B) = P(B| 4) = 0, P(4°| B) = P(B*| 4)
= 1 may hold) to evaluate P(4) = P(B) = 0, P(A°) = P(B°)
= 1, which means by (1) that both 4 and B must be given
precise probability zero.



More generally, the logical independence assumption in
def. 3.1 is motivated by the fact that if it is not assumed
either it may be impossible to meet conditions (4) or very
strong constraints on the values of P must be assumed.

See [1], [2], where def. 3.1 has been introduced referring
to precise probabilities, for a wide discussion on this
point (many of the arguments there can be -easily
transposed to imprecise probabilities).

Logical independence is regarded as an essential
prerequisite for independence also in [4], [9].

In particular, logical independence for ‘frames of
discernment’ (i.e. finite partitions) is required by Shafer
in [9], pp. 127-129, for both evidential and cognitive
independence of support functions.

The first question now is to make sure that def. 3.1 is not
vacuous, i.e. that there exists a coherent lower probability
on ¢ which realizes conditions (4). It will be useful for
this the following result, proved in [1] or [2]:

3.2 Theorem

Let S be a set of Ig. i. partitions, define ¢ as in (3), and
assign, for every 2 € S, a coherent (precise) probability
P on AP). Then the common extension on ¢ of the
probabilities on each 4 2), defined for all events in & by
P(E, |E2 A..n E) = P(E)), is a coherent precise
probability. Further, P has a unique extension on € U /1,
where /7is defined by

(&) ={EAn.NEE € AP),i=1,...n, {P,...,
Puy S}

the extension is obtained by factorization, i.e. putting, for
every By Ao AEy e 11

6)  P(E\ A...AE))=P(E)...P(Ey).

We shall also need the following lemma 3.3, whose proof
can be easily achieved exploiting defs. 2.3.1 or 2.3.2 and
the logical independence assumption (the part concerning
precise probabilities is also implied by thm. 3.2).

Note that lemma 3.3 is of some interest in itself, because
it concerns a case where logical independence makes it
possible to obtain an aggregate uncertainty evaluation
simply by grouping together separate evaluations.

3.3 Lemma

Let S be a set of Ig. i. partitions and assign, for every
2 € S, a lower (precise) probability coherent on 42).
Then the common extension P (P) on U, . 5 4P) of the
lower (precise) probabilities given on each ,4?) is a
lower (precise) probability coherent on U, . s AP).

We prove now that:

3.4 Consistency theorem

Let S be a set of Ig. i. partitions, define ¢ as in (3), and
assign, for every 2 € S, a lower probability P coherent
on A4 2). Then:

(a) the mapping defined on ¢ by putting, for each
E|Es A .NEy € @ PE | Ey A..AE) = P(E), is a
coherent lower probability;

(b) given P on ¢ as in (a) and defining /7 as in (5), there
exists a coherent extension of P on ¢ v I7 (also
named P) such that, for all events in /7,

(1) PEin.AEy) = P(E)...P(Ey).

Proof. (a) By lemma 3.3, the common extension P on
Uy < s #(P) of the given lower probabilities is coherent on
Upes /4(2)

Define the set My, = {P: P is a coherent precise
probability on U, . s AP), P =2 P on U, . s AP)}, which
is non-empty as a consequence of thm. 2.3.3. More
precisely, a generic P € M, is obtained defining for each
? € S a probability which dominates P on ~4#) and
naming P the common extension on U, . g 4A?) of these
probabilities. By varying in all admissible ways the
choice of the dominating probability on each 4 2), we
get all the probabilities in M, (each one is coherent by
lemma 3.3).

Extend now every P € M, on ¢ by putting
P(E, | Es A...AEy) = P(E,) for every E; | Es A...AE, € €.
By thm. 3.2, every such extension is a coherent
probability on ¢.

Call M, the set of these extensions. By thm. 2.3.3, the
mapping P defined on every event in ¢ by

P(|)= min {P([)}
PeM1
is a coherent lower probability on €.
But clearly P is an extension on £ of the coherent lower

probability previously defined on U, . s AP) (c ¢), and
further, by thm. 2.3.3 and by construction,

P(E\| Ey Ac..n E)) = min {P(E\| Ey A..AE)} =
PeM

min {P(E))} = min {P(E))} = P(E)).

PeM1 PeMo

(b) By construction, the hypotheses of thm. 3.2 hold for
every P € M,;, which then has a unique coherent

extension on € W [, given for every Ey An..A E, € TT
by:

8) P(E|A...AE)=P(E).. P(E)=P(E)...P(E).
Call M, the set formed by the extensions on ¢ /7 of all
P € M,. Now consider an arbitrary E; A...A E, € I7and

note that there exists P* € M, such that P*(E) = P(E),
i = 1l,...n (for every ~47P), choose among the



probabilities dominating P on @) one such that P*(E;)
= P(E) (2.3.3), note that the common extension of these
P*¥ on U, . ¢ AP) belongs to M, then follow the
procedure in (a) and above to extend it to M; and M,).
Then it is:

P*(El TATERYAN En) = B(El)B(En)

From the arbitrariness of £; A...A E, and recalling also
(8) it appears that the lower probability which satisfies
(7) is the lower envelope of A, u

3.5 Independent envelopes and independence

The sets M, M, defined in the proof of thm. 3.4 are
instances of sets whose elements (precise probabilities)
all realize independence for the partitions of S in the
sense of def. 3.1, applied to precise probabilities. Such
sets may be called, following [11], independent
envelopes. Their use is instrumental in the proof of 3.4 as
well as, often, in building up independent lower
probabilities.

A common way of introducing independence for
imprecise probabilities, the sensitivity analysis approach,
defines an independent lower probability as the lower
envelope of a set of independent precise probabilities.
Anyway we recall that the set of all precise probabilities
dominating an independent lower probability P is usually
not an independent envelope, not even in the simplest
cases ([10], lemma 9.1). In other words, independence
for a lower probability does not imply independence for
all its dominating precise probabilities.

It is not even true that lack of independence for P implies
that none of its dominating precise probabilities realizes
independence. In fact, under quite general conditions, to
achieve the dilation condition P(4|B’) < P(4) £ P (4)
<P |B’) (which, if the first or last inequality is strict,
is incompatible with irrelevance of B to 4 and hence with
independence of 4 and B) it is necessary that an
unconditional probability P exists, which dominates P
(and is dominated by P ) and is such that P(4 A B) =
P(A)P(B) (see [8]). But this implies, if 0 < P(4)P(B) < 1,
that 4 and B are independent under P.

3.6 The factorization property

The factorization condition (6) on the events of the set /7
is a necessary, but not sufficient, condition for
independence under a precise probability [2]. The
following result holds for imprecise probabilities:

3.6.1 Proposition

Let S be a set of lg. i. partitions, and P a coherent lower
probability on ¢ U 71 A necessary condition for P to
realize independence of the partitions of S by def. 3.1 is
that for every E; A...A E, € I1the following inequality

factorization condition as

holds:
%) PEA..AE)2PE).. .LP(E)
(weak factorization).

Proof. The following condition is necessary for
coherence of lower probabilities (supposing they are
defined on the events of interest):

(10)  P(Ey A...A Ep) = P(EDP(E> | E)).. .P(Ey| E) A...A
En—l);

it is easy to prove (10) for n = 2 (applying def. 2.3.2 to
the particular gain G where m = 2, 4, | B =E, | o= El,
A2|Bz = E2|E1, A0|30: Ey A B, o) :B(E2|E1), sy =1,
so = —1) and by induction for n > 2. Then (9) follows
from (10) and (4). u

3.6.2 Note

Under hypotheses analogous to those of 3.6.1, the
condition corresponding to (9) for upper probabilities is:

(9)  P(EiA..AE)S< P(E)P(E)... P (Ey).

3.6.3 Factorization and independence

Inequalities (9) in prop. 3.6.1 impose only a weak
necessary for epistemic
independence of a set of partitions. Anyway, by thm.
3.4 (b), it is always possible to apply strict factorization
— replacing > with = in (9) — to extend on ¢ U I7a lower
probability which satisfies the independence conditions
(4) in def. 3.1, therefore reaching the lower bound in (9)
for lower probability assignments on every event in /7.
This implies that:

(a) strict factorization has an important probabilistic
meaning: the extension of P from ¢ to ¢ U [I1 by strict
factorization is the natural extension of P on € U I1, that
is, applying (9) we extend a lower probability which
satisfies (4) in the vaguest, or least-committal, possible
way (while preserving coherence, cft. 2.3.4).

(b) Strict factorization is computationally simple to
apply, and we know a priori that what we obtain is still a
coherent probability; alternative choices for the
probability evaluations on the events in /7 would
generally require checking coherence of the extension so
obtained, which might be heavy to perform.

(c) Although points (a) and (b) are strong arguments in
favour of strict factorization, other independence-
preserving extensions of P to ¢ W [T are possible.
Probably the simplest way to build them is to apply thm.
3.2 for extending to ¢ w [ some, but not all,
probabilities in the independent envelope of P on U, ¢
AP), and to compute then their lower envelope on
el



(d) We present a simple example on point (c) (similar
examples may be found in [11]): suppose S = {P,, 7.},
P, =1{4, A%}, P,={B, B}, A’ A B’ # & The assessments
Pi(4) = 0.7, Pi(B) = 0.2, PyA) = 04, P,(B) = 0.5
uniquely identify two coherent precise probabilities P,
Py on AP) U AP) = {& 2 A, B’}. Extend them on
C=1{3 02 4, B, 4|B, B |4} putting P(4’|B) =
P, P(B |A’) = Pi(B’), and then on ¢ v I1 (II =
{4’ A B’}) by putting P; (4” A B’) = P(A)Py(B’),i=1, 2.
By 3.2, the extensions are coherent. Defining now P as
P(|) = min {Pi(:]"), P»(:|")} for all events in ¢ v IL P is
coherent by 2.3.3 and it is easily seen that it realizes
conditions (4) in def. 3.1. Therefore 2, and 2, are
independent partitions (under P), but P(4 A B) = 0.14 >
P(AP(B) = 0.08 (note that, on the set AP;) U 4AP,),
{P1, P,} is strictly included in the independent envelope
of P).

4 Some implications of
independence

epistemic

Suppose, throughout this section, that P is coherent on
€ v I1, that the partitions in S are (Ig. i. and) independent
with respect to P, and that whenever upper probabilities
are defined they must also realize independence for the
partitions, so that (9”) must hold for them.

A general question is to investigate the implications of
these hypotheses on the coherent extensions of P. Some
special interesting cases are discussed below.

4.1.1 External n-monotonicity

Define U = {E| v...v E; E; € AP), P, #...# Py, 1 =
1,...,n, {Py,..., Po} = S}. Say that an extension of P to
e v ITv U is externally n-monotone if n-monotonicity
holds for each eventin U, i.e. if V E, v...v E, € U,

(A1) PENV..NVE)> S PE) - SPEAE)+..
i=1 i>)

+(D)"PEL AL Ey).

4.1.2 Proposition

(a) If P strictly factors on 77, so that equality always
holds in (9), then P is externally n-monotone;

(b) in any case, also when strict factorization does not
apply, P is externally 2-monotone.

Proof. Apply (1) and (9°) to write
P(E, v..~v E) =1 — P(ES A.n ES 21 -
PES) P (E)... P ()= 1= (1 = P(EY)...(1 - P(EY).

Developing the last expression we obtain

(12) PE v..vE)= S P(E)~ S P(E)E)+...
i=1

i>]

+(-1)"'P(E)) ...P(E,).

It is immediate from (11) and (12) to see that (a) holds.
To prove (b), write (12) for n = 2 and apply (9). u

4.1.3 Comment

External n-monotonicity differs from standard n-
monotonicity just because it is applied to a set of events
which is not the usual algebra of events logically
dependent on a partition. It is external to each of the
partitions in S in the sense that the restriction of P on
AP), ¥V 2 € S, may not be n-monotone, and in general
not even 2-monotone.

So (b) seems to suggest that (external) 2-monotonicity
arises in strict connection with independence, which
following def. 3.1 operates among and not necessarily
within partitions (property (b) is mentioned in [11], note
7 to sect. 9.1, in the case of independence for two events;
see also sect. 5.13.4 for a significant example where lack
of independence is incompatible with (standard) 2-
monotonicity, but not with coherence).

As for (a), my feeling at present is that this property
might concern a much wider class of independent lower
probabilities than those which strictly factor on /7 to be
sure, it is not confined to them.

4.2 A result on independence propagation

Suppose, for instance, that S = {?,,..., P;..., ...}, that
i <j in the partition indexes implies that the experiment
whose outcomes are described by (the atoms of) 2, takes
place before that described by 2;, and that we believe the
partitions of S are epistemically independent (under a
certain given P). By def. 3.1, this implies in particular
P(Es|E\ A Ey) = P(Es), Es € APs), i € AP, 1= 1,2,
which means that the evaluation on E; is independent
from our knowing ‘what happened in the past’, if this is
meant in the sense of knowing jointly the truth values of
any couple of events (Ey, E,), Ei € A(#), 1= 1, 2. Does
this also imply independence from less punctual
information concerning the past, like knowing the truth
value of, say, E; v E,?

More generally, given an arbitrary partition in S, let it be
21, consider a finite number of partitions in S — {?,}, for
instance 2,,..., 7, If def. 3.1 holds, any event
E, € #°(P)) is independent of our knowing jointly the
truth values of any n—1 events E,,..., E, such that
Ei € A2(®), i =2,...n, ie. is independent of any event
belonging to the set 4 = AP A.A AP) =
{E; A...AEy Ej € A2(P),1=2,...,n}. On the other hand,
if we know the truth values of the atoms of partitions
?,..., P, we also know the truth values of the events in
the set #* = 4P, A..n P,) of the non-impossible
events logically dependent on the product partition



2, A...A P, Clearly, #* is a larger set than »# (for
instance, ~# is not closed under complementation whilst
A% U {J} is an algebra).

Now, the question is: does independence of £ from any
event in »# propagate to independence of E; from any
event in #*?

When all partitions in S are finite, the following
proposition assures in particular that independence from
information arising from #°(?;) A...A A#°(P,) implies
independence  from information depending on
APy A APy

4.2.1 Proposition

Let S be an arbitrary set of Ig. i. finite partitions and let P
be a lower probability on ¢ which realizes independence
for the partitions in S by def. 3.1; choose arbitrarily a
partition 2 € S and then a product partition, let us call it
AP, obtained as the product of a finite number of
partitions in S — {2}. Then P has a unique coherent
extension on every event £ | F,E € AP), F € A1\P),
given by

(13)  P(E|F) = P(E).

Proof. Tt is not restrictive, but simplifies notation, to
prove that (13) holds for 2= 2, AR =2, A...A P,

Call for this e the generic atom of the product partition
Py A...A P, From the finiteness hypothesis, 2, A...A P,
is made up of a finite number s of atoms (by the logical
independence assumption, s = s,...s,, where s; is the
number of atoms of 2, i = 2,...n). Hence any
F e AP, n...A P,) may be written as a logical sum of a
finite number of atoms of 2, A...A P,.

We shall prove the thesis in three steps.

(a) Proving (13) involves operating with extensions of P.
Now, by 2.3.3 every extension of P on an arbitrary
¢ © € may be obtained as the lower envelope on ¢, of a
set M; of precise probabilities such that the lower
envelope of the restriction of M; on ¢, let us call it M, is
the starting lower probability P. Hence, possibly different
coherent extensions of P on ¢ could be obtained by
varying the probabilities in the set M.

Anyway, defining M*(4 |B) = {P: P is a coherent precise
probability on ¢ P > P, P(4|B) = P|B)}, it is
M* = I (by 2.3.3) and at least one probability P* € M*
must be included in every set M whose lower envelope
on ¢is P, and this for every A |B e € (again by 2.3.3).

(b) Let us now consider an arbitrary event E|F,
E e AP), FeA® . .AP).

We shall prove in (b) that V P* € M*(E), (the extension
of P* on ¢ U {E| F} is such that) P*(E| F) = P(E). This
implies P(E |F) < P(E), since by (a) at least one P* is

included in any set M. Let us preliminarily note that

(14)  P¥E) = = P*(E|e®) Pre?) > P(E) T P
=P(E),

where the summations are extended to all atoms e of
2, A...A P, and the inequality holds since P*(E | e(i)) >
P(E| V) = P(E) (recall that E| e € @). But P*E) =
P(E), so (14) implies

(15) PXE|N=PE), ¥V e Py A...A P

From what seen just before (a), we can write F' = ve?,
the logical sum being extended to the finite set of those
atoms e which imply F. Therefore we can apply first
the conglomerative property and then (15) to write (the
summations are of course extended to the atoms e
which imply F and only to them):

(16)  PHE|F)=P*E rve®|vel) =
T PHE| D) P [ ve®) = P(E) T P | ve®)
= P(E).

(c) It is now easy to prove that every precise probability
P dominating P on ¢ is such that P(E | F) > P(E) (follow
the steps in (16), substituting P* with P and replacing the
third equality by > since P(E|e?) > P(E|e?) = P(E)).
From this and the conclusions of (b) we obtain P(E | F)=
E(E). u

4.2.2 Comment

The result in 4.2.1 shows that there are instances where
independence is necessarily maintained when extending
a lower probability. It should be possible to generalise
4.2.1 in some directions, as long as the hypothesis of
finiteness of the partitions is maintained.

5 Conclusions

The approach followed in this note regards irrelevance as
the essential concept for interpreting and defining
independence. Nevertheless we saw that the property of
strict factorization is always admissible and significant,
not only computationally.

We focused on the essential aspects, starting from
consistency, of the notion of independence proposed,
which includes many concepts of independence as
special cases: for instance, independence among n
events, putting S= {P,,..., P}, 2= {4, A}, i=1,...n.

Although we preferred to discuss independence for the
more immediate case of events, it is also possible to
consider the atoms of each partition 2; in def. 3.1 as the
distinct outcomes of a random number X;, so that every
event E; € 4#°(P) identifies a subset v; of the set V; of the
admissible values for X;. Then epistemic independence
for a family F of random numbers can be defined by



requiring that their underlying partitions are logically
independent and that the following equalities hold, V X,
X,... XoeF,Vvel,i=1,..,n

P(X; € vy |X2 €W A...AX, €Vv,)=PX; € v).

A noteworthy feature is that, by the extension theorem
(sect. 2.34), it is always possible to assign lower
probabilities only on subsets of A4?), for some or all
2 € S, and to extend them on a subset of ¢ realizing
partially the independence conditions (4): this will be the
rule in many practical situations.

Directions for further work include possible
generalisations of independence propagation, the
treatment of conditional independence, and applications.
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