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Abstract

This paper deals with a model of pollution accumu-
lation in which a catastrophic environmental event
occurs once the pollution stock exceeds some uncer-
tain critical level. This problem is studied in a con-
text of “hard uncertainty” since we consider that the
available knowledge concerning the value taken by the
critical pollution threshold contains both randomness
and imprecision. Such a general form of knowledge
is modelled as a (closed) random interval. This ap-
proach is mathematically tractable and amenable to
numerical simulations. In this framework we inves-
tigate the effect of hard uncertainty on the optimal
pollution/consumption trade-off and we compare the
results with those obtained both in the certainty case
and in the case of “soft uncertainty” (where only ran-
domness prevails).

Keywords. optimal pollution control, environmental
risk, belief functions, random intervals, representation
of uncertainty.

1 Introduction

This paper presents an optimal pollution control
model in which individuals have to tradeoff consump-
tion against pollution given that consumption gives
rise to pollution. We develop a partial equilibrium
model for a polluting economy since we neither con-
sider the capital accumulation nor the production
process for the final good. The consumption decisions
are made under uncertainty. Indeed, when the pollu-
tion stock exceeds some unknown critical threshold
a catastrophic environmental event occurs. Such an
environmental catastrophe is irreversible in the sense
that once it has occurred the economy can not recover
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its initial state. Similar situations have been studied
among others by Cropper [7], Conrad [6], Pethig [12]
and more recently by Clarke and Reed [5] and Tsur
and Zemel [13], [14] and [15].

The main difference between these works and our lies
in the form of uncertainty we consider. Following the
distinction introduced by Vercelli [16] we consider a
situation of “hard uncertainty” which contrasts with
the classical situations of “soft uncertainty”.

A situation of uncertainty is said to be soft when-
ever the available information concerning the value of
the critical pollution threshold can be modelled by a
unique (additive) probability measure. On the con-
trary, we talk about hard uncertainty when the avail-
able information is insufficient or incomplete to be
modelled by such a unique fully reliable probability
measure.

This general form of uncertainty seems to be particu-
larly relevant to the discussion of many environmental
risks. Indeed, concerning most of these questions the
experts consider that the current state of scientific
knowledge is not sufficient to measure precisely the
incurred risk. They feel some kind of imprecision on
the probability distribution of the catastrophic event
itself.

In Vercelli [16], selected environmental problems in-
volving hard uncertainties are discussed. It is essen-
tially a matter of global threats such as the conse-
quences of the ozon layer hole or the greenhouse ef-
fect.

The literature on imprecise probabilities proposes
many mathematical models to cope with uncertainty
situations that cannot be reduced to soft uncertainty
(see Walley [17]). The point here is to implement the
recent advances in imprecise probabilities theory to
analytically solve a hard uncertainty situation in an
optimal pollution control model.

The paper is organized as follows. In Section 2 we de-



velop a model of optimal pollution control under hard
uncertainty based upon the concept of closed random
intervals. The model is then analytically solved and
the optimal pollution accumulation path under hard
uncertainty is compared with the solution obtained
under soft uncertainty. Section 3 illustrates these re-
sults by numerical simulations of the model.

2 Optimal pollution control model

We consider an optimal pollution control model in
an economy vulnerable to a catastrophic environmen-
tal event with irreversible effects. The instantaneous
utility! of a representative individual U (C}) increases
with the consumption level C; but the production and
consumption processes of this good give rise to pollu-
tion emissions eCy, where ¢ is a constant pollution to
consumption ratio. This pollution accumulates into a
pollution stock S;. The evolution law of S; is given
by:

St = €Ct — OéSt (1)

where « is the constant natural rate of pollution de-
cay. Individuals are sensitive to pollution accumu-
lation and the damage caused by pollution? D (S;)
reduces their instantaneous welfare. The decision-
maker (DM) has to trade-off consumption against pol-
lution, given that consumption gives rise to pollution.

We only consider catastrophic events with so impor-
tant consequences that it is always optimal for the
economy to avoid them. This implies structural para-
meters of the economy such that the costs of avoiding
the catastrophe are always less than the costs of the
damages due to the catastrophe.

Assumption 1 [t is never optimal to let the catastro-
phe happen.

In this model, a catastrophic event arises when the
pollution stock exceeds a critical threshold X (which
is an unknown but fixed environmental constant) that
represents the maximum pollution level the ecosystem
can tolerate. As usual X is modelled as a random
variable (r.v.) and with c.d.f.

Fx (S) = P(X < S) 2)

which is supposed to be continuously differentiable.
Fx (S) gives the probability that the castatrophe has

"We suppose a constant relative risk aversion (CRRA)
utility function such that U (C) > 0, U'(C) > 0 and
U"” (C)<o.

*We suppose that the marginal damage is non-
decreasing in the pollution stock with D (S) > 0, D' (S) >
0 and D" (S) > 0. Under these assumptions, the welfare
U (C)— D(S) is concave in (C,S).

already occurred for the pollution stock level S.

Let T be the (uncertain) date at which the catastro-
phe happens. As we shall see, under some assump-
tions T is also a r.v. whose distribution can be de-
rived from that of X. The optimal pollution control
problem can then be stated:

max B {/Te—pt (U (C)) - D(S) dt}

{C:} 0
St = €Ct — OéSt
So < X given

3)

subject to ‘

The DM’s problem is to maximize the intertemporal
welfare of an infinitely living representative individ-
ual. Intertemporal welfare is the discounted sum of
instantaneous welfare (p > 0 is the DM’s discount
rate). We suppose that once the catastrophe has oc-
curred, the instantaneous welfare is reduced to zero
for an infinite period of time (U (C¢) — D (S;) = 0
for all ¢t > T). The DM’s objective is then the ex-
pected discounted flow of welfare, from date 0 to the
(uncertain) date of the catastrophe, with respect to
the probability distribution of T, given that at time
zero the catastrophe has not happened yet. The no-
tation Er{-} denotes the expectation with respect to
the distribution of 7'

For simplicity we restrict our analysis to optimal con-
sumption paths that correspond to monotonically in-
creasing (or decreasing) pollution paths.

Along non-increasing pollution paths, we know for
sure that the catastrophic event will never occur since
for Sp < X and S; < Sy we have P (X < S;) =0 for
all t > 0. The DM’s objective then becomes:

/ T et (U(C) - D(S)) db (4)

0

Along non-decreasing pollution paths it can easily be
shown that the r.v. T is obtained from the r.v. X
by an increasing transformation. The c.d.f. of T can
then be deduced from that of X:

Fr(t) = PT<t|T>0)=P(X <S5 |X>5)
_ Fx(S) = Fx (S) (5)

1 — Fx (So)
We may also define the survival function sx (S;) as

the probability for the event not to have occurred yet
at time ¢:

SX(St):lFT(t)% (6)

The definition of the expected value implies the fol-
lowing equality :

ET{/Te—ﬂt (U (C)) - D(S)) dt}

0



— /Ooo </Ot e PL(U (Cy) — D (Sy)) dt) dFr (t)

Integrating this function by parts, given that Fr (0) =
0, limy_,oo Fr (t) =1 and 1 — Fr (t) = sx (St), leads
to the following objective which is the expected value
of intertemporal welfare.

/ :O sx (Si) et (U(Cy) —D(Sy) dt  (7)

Thus the solution to the problem (3) involves both
the optimal pollution control problem without risk
(for decreasing pollution paths) and the one under
uncertainty studied on a restricted domain (i.e. non-
decreasing pollution paths). This second problem is
called an “auxiliary problem” by Tsur et Zemel [13].

When the distribution of X is precisely known, the
auxiliary problem has a single solution (given the ini-
tial pollution stock level) and the optimal consump-
tion and pollution paths can be fully determined.
Here we suppose that the available information is in-
complete or insufficient to completely specify the dis-
tribution of the critical pollution threshold X. More
precisely, we suppose that the existence of a probabil-
ity distribution for X can be hypothesized but, due to
imprecise information, this distribution is only known
to belong to some class of possible distributions.

2.1 Pollution accumulation without
uncertainty

Knowing for sure the pollution critical threshold X
beyond which the catastrophe occurs, the control
problem may be written as:

/OO et (U (Cy) — D(Sy)) dt

max
{C+} 0 .
St = €Ct — OéSt (8)
subject to S <XVt>0
So < X given
The optimality conditions are:
g = -U(C)/e (9)
L D'(S)+6
0 = B(X-5) (11)

where ¢ is the co-state variable for the pollution stock
and 3, > 0 is the Lagrange multiplier associated with
the state constraint Sy < X. The transversality con-
dition is:

lim efpttht =0

t——+o0 (12)
Totally differentiating with respect to time the first
optimality condition (9) and writing the accumula-

tion equation of the pollution stock (1), we obtain a

dynamic system in C' and S.

“__c L DS)18
{ C=-£(p+a-cipie?) (13)

S=eC—-al

where 1/0 = —CU" /U’ is the (constant) intertempo-
ral elasticity of substitution for consumption and also
the inverse of the relative risk aversion coefficient.

This system has a single interior stationary solution
(C*,8*%) such that C* = aS* /e and S* is the single
solution to the equation:

D' (S5)

@(S)Ep—&—a—eU/

T (aS/e) "

(14)

where ® (5) is strictly decreasing in .S with @ (0) > 0
and limg oo @ (5) < 0. It can be shown that the
steady-state (C*,S*) is a saddle-point equilibrium.
This implies that if the pollution stock is above its
steady-state value S* the optimal path towards S*
is strictly non-increasing in S. On the contrary if
S¢ < 8%, the pollution stock should monotonically
increase along the optimal path towards the steady-
state. Figure 1 illustrates the pollution stock dynam-
ics. Thus the optimal path of the certain case also

p+b p+b

*

SS°| S
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a. Case X > §* b. Case X < §*

Figure 1: Pollution dynamics in the certain case

applies under uncertainty when the pollution stock is
above its certain steady-state value S* since this opti-
mal path is then decreasing in S. On the other hand
when S; < S* the economy is vulnerable to the risk
of ecological catastrophe and the optimal path is a
solution to the auxiliary problem.

2.2 Auxiliary problems under hard
uncertainty

Suppose that the available information concerning X
is modelled as a (closed) random interval (c.r.i.) I' de-
fined on some fixed probability space (2, A, P), i.e. T
is a multi-valued mapping defined on €2, which takes
as values (non empty) closed intervals of the real num-
bers. T is supposed to be strongly measurable. The
interpretation of this model is as follows. We sup-
pose that the critical pollution threshold can be mod-
elled as a real-valued r.v. X defined on (92, A, P) but



that we are facing difficulties in observing the out-
come of the random experiment. More precisely we
suppose that for each w € 2 we cannot observe the
exact outcome X (w), but can only locate it in some
non-empty closed interval I' (w), that is X (w) € T (w).
This model, which takes both randomness and impre-
cision into account leads to a more general form of
uncertainty than the classical one. To see this, we as-
sociate a class X' of compatible real-valued r.v. with
r

Definition 1 A compatible r.v. (compatible with T')
18 a real-valued measurable mapping X defined on €2,
such that for all w € 2, X (w) € T' (w).

When the available information is represented by a
c.r.i., the “true” r.v. is not observable but one knows
that it belongs to the class X of compatible r.v.’s.
Each compatible r.v. induces a probability distribu-
tion and our information is completely described by a
convex set of probability measures P whose members
are the probability measures associated to the com-
patible variables. Moreover the lower enveloppe P, of
this set is a belief function and characterizes P, i.e.
P is the set of all probabilities that dominate P.

Then there exists as many auxiliary problems as ran-
dom variables that are compatible with the available
information, each of these problems being similar to
an optimal pollution control problem under soft un-
certainty. Let Fx (S) = P(X < S) be the contin-
uously differentiable c.d.f. of some compatible r.v.
X € X. Moreover notice that only the non-decreasing
paths along which the pollution stock remains below
S* are of interest for the auxiliary problem. An aux-
iliary problem can then be stated as:

max / T sx (S) et (U (C) — D(Sy) dt

{C:} J o .

St = €Ct — O[St
0<85,<85<5vVt>0
So < 5* given

subject to

(15)
where sx (5) is the survival function corresponding to
X. The detailed resolution of this program is given
in Chevé and Congar [3].

For each compatible r.v., problem (15) leads to a dy-
namic system in C' and S.

C‘:—% [p+a755,((g;

+9X(S)(€Cfa57U(C)+D(S))7%

S=eC—aS

(16)
where ¢ and v are respectively the Lagrangian multi-
pliers for the state constraints Sy < S* and Sy > L.

Interior stationary solutions to the system (16), de-

noted by (C’X,SX), are such that Cx = aSX/e and
Sx is a solution to the following equation?:

Iy (8) =@ (5) —gx (SHW(S) =0 (17)

where W (S) = U (aS/e) — D (5) is the instantaneous
welfare corresponding to a stationary pollution stock
S, and

1 0sx (S)

gx () = sy (S)T

is the “hazard rate”* that corresponds to the r.v. X
with S the current pollution stock. gx (S) is the prob-
ability for the catastrophe to occur when the pollu-
tion stock marginally increases over S, given that it
has not occurred yet.

(18)

. PS<X<S+A|X=>S)
gx () = Jim K >0 (19)
Thus the optimal path under uncertainty at each
time ¢ only depends on the instantaneous catastro-
phe probability. This probability is summarized by
the hazard rate gx (S). Moreover we notice that for
all W (S) > 0, the steady-state pollution stock under
uncertainty is necessarily less than the certain steady-
state pollution stock, that is Sy < S*.

Since we have supposed that the catastrophe occur-
rence reduces the welfare to zero, Assumption 1 nec-
essarily implies that the steady-state welfare in the
certain case is positive, that is W (5*) > 0. Thus soft
uncertainty on the critical pollution threshold leads
to a decrease in the steady state pollution stock. In
other words, uncertainty leads to a more conservative
behavior with respect to environmental quality (these
results are detailed in Chevé [2]).

The resolution of the auxiliary problems associated
with all the compatible variables enables us to work
out all the possible pollution accumulation paths that
are compatible with the available knowledge. More
precisely we can find the optimal steady states for
each compatible r.v. It can be shown that the set of all
optimal steady states is an interval. The exact bounds
of this interval can be computed when uncertainty is
modelled by a c.r.i.

Using the formula (19) which defines the hazard rate
for each rv. X € X as a conditional probability

3For convenience, we restrict our attention to the case
where (17) has a single solution on [0,S*]. This is the
case for most common probability distributions and wel-
fare functions.

*We abuse the notation since the hazard rate at time
t should strictly be defined as the probability for the
catastrophe to occur at the next time, given that it has
not occurred yet. The “true” hazard rate is positively

/\X (t) =4gx (St) St.



and the “full bayesian updating rule” (see for exam-
ple Jaffray [9]), we associate a class of hazard rates
G ={gx (S) : X € X} with the class X. The bounds
of this class are defined as follows:

g™ (9) sup{gx (S) : X € X} (20)
gxx (S) = inf{gx (9): X € X}

These bounds can be computed using the upper and
lower probabilities induced by the c.r.i.

Following Dempster [8], we consider the case of a c.r.i.
defined by two real-valued r.v. defined on the same
probability space. These random variables represent
the bounds of the c.r.i. In this setting, the upper and
lower probabilities of any interval may be simply ex-
pressed in terms of the joint c.d.f. of these two r.v.
We then show that the lower bound of the hazard
rates g.« () is always equal to zero whatever the pol-
lution stock level. It actually turns out that for each
value of the pollution stock we can always find a com-
patible r.v. for which the catastrophe instantaneous
probability is zero.

Note that for each pollution stock level the upper and
lower hazard rates do not coincide with the hazard
rates corresponding to the upper and lower r.v. that
bound the class X.

Using the upper and lower bounds of the hazard rate
we define the following functions:

I (S) Q(S) =g (S)W(S) (21)
L. (5) B (S) — g (S)W (S) = B (S)

Let S, be the solution to the equation IT** (S) = 0
and S** be the solution to the equation IL,, (S) = 0,
notice that since g..(S) = 0 for each S, we have
S = G (notice the interchange of subscripts and
superscripts in order to respect the ranking of the
steady-states pollution levels). The imprecision on
the probability distribution of the critical pollution
threshold implies an interval of steady-state equilib-
ria, each of them corresponding to a compatible r.v.
Let S be the set of all compatible steady-states, that
is S = {Sx : X € X}. The equilibrium S corre-
sponding to the “true” r.v. X necessarily belongs to
S. Moreover, S*** and S** are respectively the lower
and upper bounds of the set S.

2.3 Pollution accumulation dynamics

For each r.v. compatible with the available informa-
tion the pollution accumulation dynamics is given by
the resolution of the model under soft uncertainty. In
this case, we can state the following propositions con-
cerning the pollution stock dynamics (see Tsur and
Zemel [13] and Chevé [2]).

Proposition 1 When @ (S) < 0, the optimal path
under uncertainty corresponds to the optimal path of
the certain case. Along this path the pollution stock
decreases.

When ® (S) > 0, the optimal pollution path cannot be
decreasing.

When ® (S) > 0 and IIx (S) < 0, the optimal pollu-
tion path cannot be increasing.

This proposition implies that when ® (S) > 0 and
IIx (S) > 0, the optimal policy is to maintain the
pollution stock at this level.

Proposition 2 When ®(S) > 0 and IIx (S) > 0,
the optimal pollution path is necessarily increasing.

When the probability distribution of X is known for
sure and the equation IIx (S) = 0 has a single solu-
tion on the interval [0, S*], the pollution accumula-
tion dynamics is depicted in Figure 2. Finally, it can

TIx (

S
S S
N

Single interior solution

Figure 2: Pollution dynamics under soft uncertainty

be shown that whenever IIx (S) crosses the S—axis
from above the steady-state is a saddle-point. On
the contrary when IIx (S) crosses the S—axis from
below it yields an unstable steady-state. Thus when
the problem has a single solution, this equilibrium is
necessarily a saddle-point.

Under hard uncertainty, that is when the “true” r.v. is
only known to belong to the class X' of compatible r.v.,
we obtain the Figure 3 (under the assumption that
each equation (17) has a single solution on [0, 5*]).

By comparing the different pollution accumulation
dynamics corresponding to each compatible r.v. we
notice that these dynamics are compatible with each
other on some part of the domain (the pollution stock
evolves in the same direction for any compatible r.v.).
We then deduce from this observation that:

- If ©(S) > 0 and II** (S) > 0 the pollution stock

increases;
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Figure 3: Pollution dynamics under hard uncertainty

- If ®(S5) <0 and IT** (S) < 0 the pollution stock
decreases towards S*.

On the other hand if II** (S) < 0 and ® (S) > 0, that
is if S € [S,x,5**], the pollution stock dynamics can-
not be solved. This is due to the irreducible impreci-
sion concerning the distribution of X. In fact this dy-
namics depends on the DM’s attitude towards the im-
precision contained in the available information. In-
deed he has to select a steady-state, in consumption
and pollution, that belongs to the interval [S,., $**.
We may distinguish between three main different pos-
sible attitudes towards imprecision. The dynamics of
the pollution stock is then the consequence of the par-
ticular choice of the DM.

The decision-maker is fully optimistic. We de-
fine a fully optimistic DM as a DM whose choice is
based on the most optimistic available information. In
the model such an individual decides on his steady-
state consumption level by taking into account the
smallest hazard rate which is compatible with the
available information. Moreover it has been shown
that whatever the pollution stock there always exists
a compatible r.v. for which the hazard rate is zero,
that is g.« (St) = 0VS;. Thus, when there exists some
imprecision on the actual risk of catastrophe, a fully
optimistic decision-maker acts as if there was no risk
at all. The pollution accumulation dynamics is there-
fore the same as the one in the certain case. It means
that when the pollution stock belongs to the interval
S, the pollution stock increases towards S*.

The decision-maker is fully pessimistic. The
opposite case is the one in which the DM takes his
decisions considering the highest hazard rate that is

compatible with the available information. In this case
the optimal steady-state pollution stock S, is the so-
lution to the equation II** (S) = 0. If the pollution
stock belongs to the interval S the optimal policy con-
sists in maintaining the pollution stock at this level.
Indeed it can be optimal for the pollution stock nei-
ther to decrease (with respect to the dynamics of the
certain case since it corresponds to a decrease in wel-
fare) nor to increase (with respect to the dynamics
under uncertainty since the risk is too large compared
with the increase in welfare).

Thus the imprecision leads to a more conservative
behavior than simple randomness since S,. < Sx
vX e X.

The decision-maker is neither fully optimistic
nor fully pessimistic. We can also consider the
case of a DM who has a less extreme attitude towards
imprecision than the preceding ones. Assume that an
individual can be described by a certain “optimism in-
dex” constant over time, denoted x € [0,1]. This DM
select a steady-state by taking into account a hazard
rate g, (S¢) which is built as a convex combination of
the extreme hazard rates.

9x (8) = Kgus () + (1 = 5) g™ (5)

The steady-state pollution stock is then S"m the so-
lution to the equation Il (S) = 0, where II, (S) =
KL (S) + (1 — k) II** (S) and S, € S.

Such a behavior has a familiar form. It recalls the
Hurwicz’s criterion (Arrow et Hurwicz [1]) but ap-
plies to more general situations of uncertainty than
the one of complete ignorance considered by Arrow
and Hurwicz. Such representations of the behavior
in partial ignorance situations described by a belief
function on a finite set have been studied by Jaffray
and Wakker [11]. The extension of this criterion to a
dynamic framework is discussed in Jaffray [10]. The
fully optimistic [resp. fully pessimistic] case corre-
sponds to the maximum [resp. minimum] value of the
optimism index, x = 1 [resp. k = 0].

Finally, we may suppose that a DM wishes the prob-
lem to come down to a situation of soft uncertainty
by subjectively picking one random variable X in the
class X. Then his optimization problem corresponds
to an auxiliary problem (and to the certain problem
for S; > S*) and leads to a steady-state pollution
stock Sy € [3**,3**} If S, < Sx the pollution path
increases towards S*X and if SX <S¢ < 5% the pollu-
tion stock is maintained at this level. In this case, the
underlying DM’s attitude towards imprecision can be
characterized in the Hurwicz’s criterion framework.
Indeed there exists a x value such that S'K coincides
with the Sx associated with the particular X chosen
by the DM.



3 A numerical example

In this last section we carry out numerical simula-
tions of the optimal pollution accumulation steady-
state under hard uncertainty. The first step is to build
a random interval (the method based upon Demp-
ster [8] is detailed in Congar [4]). We then compute
the possible steady-state equilibria under hard uncer-
tainty.

We choose some specific functional definitions for the
utility of consumption and the damage caused by pol-
lution:

Sl+9
146

- and D (S) = ¢ (22)

The parameters values of the model have been arbi-
trarily set.

¢ |0l elal p |up
0.001 | 1]05]02][003]15

Under these assumptions the desired optimal pollu-
tion stock when there is no risk of catastrophe is
S* = 57.13. The flow of consumption is then equal to
C* = 22.85.

We choose the following parameters for the Gaussian
joint-density function generating the random interval:

T |m1|m2|01|02
05|60 | 40 [ 10| 15

where r is the correlation coefficient. These values
imply that the expected values of the extreme vari-
ables Y and Z are Y = 59.83 and Z = 99.84 which
are both greater than the value of S*. The expected
value of the unobservable variable belongs to the in-
terval [59.83,99.84].

We can compute the different steady-states pollu-
tion levels corresponding to the functions IT**(5),
IL.. (S) = ®(9), IIy (S) and 11z (S).

S** | S** | S'Y | SVZ
3892 | 57.13 | 44.11 | 54.90

Each steady-state value of S compatible with
the available information belongs to the interval
[Sur, S*] ~ [38.92,57.13]. The steady-states corre-
sponding to the extreme variables Y and Z also belong
to this interval. However we notice ) that Sy and S 7
are not the bounds of the interval S and i) that Sy is
less than S . The second observation seems counter-
intuitive but can be explained by the fact that the
stochastic dominance relation between the two r.v.
implies no relation of order between the hazard rates
associated with these variables.

0.25
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0.05

10 20 30 40 60 70
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Figure 4: Steady-state equilibria and optimism index

The first result means that considering a situation
of hard uncertainty yields some results that are not
straightforward. Indeed these results are much differ-
ent from the ones that would have been obtained con-
sidering a situation of soft uncertainty with a safety
margin around the probability distribution of the crit-
ical pollution threshold.

Figure 4 and Table 1 represent a few steady-state pol-
lution levels corresponding to the Hurwicz’s criterion
when the optimism index x varies between zero and

K 0 0.1 0.2 0.3 0.4 0.5
Sk | 38.92 | 39.21 | 39.54 | 39.96 | 40.41 | 41.00
K 0.6 0.7 0.8 0.9 1

S, | 41.71 | 42.67 | 44.09 | 46.58 | 57.13

Table 1: Steady-state pollution stock and optimism
index

For the specific parameters values chosen in these nu-
merical simulations, we notice that the equilibrium
level of pollution does not evolve linearly with respect
to the optimism index. Indeed even for a high opti-
mism index (k = 0.9) the steady-state pollution stock
is closer to the fully pessimistic equilibrium than to
the fully optimistic one. Thus, imprecision does not
encourage the DM to neglect the risk of catastrophe
except for the specific case of a fully optimistic DM
(k=1).

According to these results it seems that the behavior
of a fully pessimistic DM can be taken as an approx-
imation of the behavior of the DM under hard un-
certainty when there is no available information con-
cerning the individuals’ attitude towards imprecision.
Such a recommendation is then in line with the pre-
cautionary principle. This principle in the Maastricht
Treaty states that

“the absence of certainty given our current



scientific knowledge should not delay the use
of measures preventing a risk of large and
irreversible damage to the environment at
an acceptable cost”.

According to this principle, we have shown that
(hard) uncertainty on the risk of ecological catastro-
phe should lead to a more conservative policy than
the one that should be implemented when only ran-
domness prevails.

4 Concluding remarks

In this paper we have shown that the concept of hard
uncertainty is tractable in applied models and espe-
cially in optimal pollution control models. Indeed
closed random intervals provide a convenient frame-
work to represent both theoretically and numerically
situations of hard uncertainty in economic models.

The main result of this paper is that the impreci-
sion on the risk of ecological catastrophe leads to
a steady-state interval or to an interval of possible
steady-states. The particular value to be chosen as
a steady-state is left undecided unless the decision-
maker’s attitude towards imprecision is taken into ac-
count. The DM’s ambiguity aversion (in the sense of
aversion toward imprecision) is dealt with through the
use of an Hurwicz’s like criterion.

Computations of the model indicate that, without any
information about the DM’s attitude towards impre-
cision, a good approximation of his behavior could
be the one of a fully-pessimistic DM. Moreover this
fully-pessimistic DM chooses the lower bound of the
interval of possible steady-states as an equilibrium.
Thus a robust strategy under hard uncertainty is to
choose the most conservative behavior. This result
illustrates the precautionary principle.
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