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Abstract

In belief functions, there are two types of uncertainty
which are due to lack of knowledge: randomness and
non-speci�city. In this paper, we present a non-
speci�city measure for convex sets of probability dis-
tributions that generalizes Dubois and Prade's non-
speci�city measure in the Dempster-Shafer theory of
evidence.
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1 Introduction

The concept of uncertainty is intricately connected to
the concept of information. The amount of informa-
tion obtained by an action must be measured by a
reduction in uncertainty.

Shannon's entropy [13] has been the tool for quanti-
fying uncertainty in classic information theory. This
function has some desirable properties and has been
used as the starting point when looking for another
function which can measure uncertainty in situations
where a probabilistic representation is not adequate.

In Dempster-Shafer's theory, Yager [14] makes the dis-
tinction between two types of uncertainty. One is as-
sociated with cases where the information is focused
on sets with empty intersections and the other is as-
sociated with cases where the information is focused
on sets with a cardinal over one. They are called ran-

domness and non-speci�city respectively.

According to Maeda and Ichihashi [10] a function that
measures the total uncertainty in a basic probability
assignment, b.p.a., should satisfy the following fun-
damental properties: it coincides with Shannon's En-
tropy for probabilities, it attains its maximum for the
total ignorance and it is monotonic with respect to
the inclusion of b.p.a. In Abellan and Moral [1] we
have studied Maeda and Ichihashi's measure of Total

Uncertainty in D-S theory [10], and we have analyzed
its method of quantifying the uncertainty.

There are some situations in which the available in-
formation is represented by a convex set of probabil-
ity distributions, c.s.p.d., as in Walley [15]. Here, we
intend to work with convex sets of probability dis-
tributions, a model that generalizes the D-S theory.
Our starting point is that in imprecise probabilities,
we also have two sources of uncertainty: randomness
and non-speci�city. In general, there are randomness
measures which can be easily generalized to imprecise
probability, but this is not the case for non-speci�city
measures. In this paper, we will de�ne a measure
of non-speci�city that generalizes Dubois and Prade's
measure of non-speci�city in D-S theory [5].

In Section Two, we consider the fundamentals of the
Dempster-Shafer theory in order to establish the ba-
sic concepts and the notation. In Section Three, we
present a function for c.s.p.d. to measure a non-
speci�city that generalizes the Dubois and Prade's
function, thereby studying its main properties.

2 Uncertainty in D-S Theory

Let X be a �nite set considered as a set of possible
situations, jX j = n; }(X) the power set of X and x

any element in X

Dempster-Shafer theory [4, 12] is based on the concept
of mass assignment. A mass assignment is a mapping

m : }(X)! [0; 1] ;

such that m(;) = 0 and
P
A�X

m(A) = 1:

The value m(A) represents the degree of belief that a
speci�c element of X belongs to set A, but not to any
particular subset of A.

The elements A of X for which m(A) 6= 0 are called
focal elements.



There are two functions associated with each b.p.a.:
a belief function, Bel, and a plausibility function, Pl:

Bel(A) =
X
B�A

m(B);

P l(A) =
X

A\B 6=;

m(B):

We may note that belief and plausibility are interre-
lated for all A 2 }(X)

P l(A) = 1�Bel(A);

where A denotes the complement of A. Furthermore,

Bel(A) � P l(A):

The measurement of uncertainty was �rst conceived
in terms of the classical set theory. Hartley [8] mea-
sured the uncertainty of set A as ln jAj. Therefore, if
we want that our measure of non-speci�city is a gen-
eralization of Hartley's measure, then if m is a b.p.a.
focusing on a single set, i.e. m(A) = 1 and m(B) = 0
if B 6= A, then the uncertainty contained in m must
be equal to ln jAj :

The classical measure of Entropy [13] is de�ned by
the following continuous function:

H(p) = �
nX
i=1

pi ln(pi);

where p(p1; :::; pn) is a probability distribution.

The non-speci�city function, introduced by Dubois
and Prade [5], represents a measure of imprecision
associated with a b.p.a. and is expressed as follows:

I(m) =
X
A�X

m(A) ln(jAj):

I(m) attains its minimum, zero, whenm is a probabil-
ity distribution. The maximum, ln(jX j), is obtained
for a b.p.a., m; with m(X) = 1 and m(A) = 0; 8A �
X .

Maeda and Ichihashi [10] have proposed an uncer-
tainty function. It quanti�es the randomness and non-
speci�city contained in a b.p.a. on X as

UT (m) = I(m) +G(m);

where I(m) is Dubois and Prade's non-speci�city
function and G(m) is the solution of the problem:

Max

(
�
X
x2X

px ln px

)
;

where the maximum is taken over all the distribu-
tion on Cm; and Cm a closed convex set on IRjXj,
Harmanec and Klir [1994], that is de�ned as the set
of probability distributions f(px) j x 2 Xg satisfying
the constraints:

(a) px 2 [0; 1] for all x 2 X and
X
x2X

px = 1;

(b)Bel(A) �
X
x2A

px � 1�Bel(A) for all A � X:

In Abellan and Moral [1], we introduce a factor with
some interesting properties, which can be used as a
correction factor to modify Maeda and Ichihashi's
measure. The basis is the cross entropy between two
probability distributions as introduced by Kullback
[9]

K(p; q) =
X
x2X

px ln

�
px

qx

�
;

where p and q are two probability distributions on a
�nite setX . This function is similar to an information
measure and may be considered as a measure of direct
divergence, [9]. It does not have all the properties of
a distance.

We use this function in the following way. Let

R(m) = Min

p2Fr(Cm)

K(p; bq);
where Cm is the c.s.p.d. associated to m, [4], bq is
such that G(m) = �

P
x2X

bq x ln(bq x), i.e. the proba-

bility distribution with maximum entropy inside Cm,
and Fr(Cm) is the frontier set of Cm. We call R(m)
the Kullback Factor of m.

In Abellan and Moral [1] we propose the following
Total Uncertainty measure in D-S theory:

UTR(m) = I(m) +G(m) +R(m):

Both G(m) and R(m) can be easily generalized to
the case of convex set of probability distributions. In
fact they are expressed in terms of the convex set Cm
associated to a mass assignment m. However, this is
not the case of I(m) which is calculated directly from
m.



3 A General Function of
Non-speci�city

We want to measure the non-speci�city contained in a
general convex set of probability distributions, i.e. in-
cluding the case of their faces not being parallel to the
sides of the Probabilistic Polytope. In a �rst attempt,
we used some functions to quantify the non-speci�city
in a c.s.p.d. based on the volume of a polytope in IRn,
because it is natural to think that the non-speci�city
is directly related to the volume. But it is di�cult to
obtain an expression based on volume of a polytope in
Rn that is continuous and that is not equal to zero for
degenerated polytopes (the non-speci�city of a b.p.a.
focused on a single set B should be equal to ln(jBj)).
For example, in IR3, let C1 and C2 be the sets
of all convex combinations of f(1; 0; 0); (0; 0:5; 0:5)g
and f(1; 0; 0); (0; 0:5; 0:5); (0; 0:5� @; 0:5 + @)g, re-
spectively. When @ ! 0 then the non-speci�city of
C1 and C2 should be two similar quantities. However,
since they have di�erent dimensions, dim(C1) = 1 and
dim(C2) = 2, this adjustment is complex. The vol-
ume of C2 converges to 0 and the non-speci�city of
C1 should be di�erent from 0. Problems also arise
when dealing with the monotonic property.

Finally, we try to generalize Dubois and Prade's non-
speci�city measure [5] to the general case of convex
sets of probability distributions.

If we know the set of vertices in a convex set, then this
set is completely determined. In order to solve the
problem of computing all the vertices of a polytope.
Mattheiss and Rubin [11], provide some methods for
�nding them.

Some concepts �rst need to be de�ned: the lower ca-
pacity associated to a convex set and its M�obius in-
verse [3].

DEFINITION 1. Let C be a c.s.p.d. on a universal
X . We de�ne the following capacity function:

f(A) = Inf
P2C

P (A); 8A 2 }(X);

where }(X) is the power set of X:

DEFINITION 2. For any mapping f : }(X) ! R
then the mapping m : }(X)! R; given by

m(A) =
X
B�A

(�1)jA�Bjf(B); for all A 2 }(X);

will be called the M�obius inverse of f .

This correspondence proves to be one-to-one, since
conversely,

f(A) =
X
B�A

m(B); for all A 2 }(X);

as we can see in Shafer [12].

DEFINITION 3. Let C be a c.s.p.d. on a universal
X , f its minimum lower probability as in De�nition 1
and let m be its M�obius inverse. We say that m is the
assignment of masses of C: And we call any A 2 X

such that m(A) 6= 0, a focal element of m.

We can now de�ne a general function of non-
speci�city.

DEFINITION 4. Let C be a c.s.p.d. on a universal
X . Let m the assignment of masses associated to C.
We de�ne C the non-speci�city of C as,

IG(C) =
X
A�X

m(A) ln(jAj):

This extends to c.s.p.d. the non-speci�city function
de�ned by Dubois and Prade for belief functions.

This function takes, for a c.s.p.d., the non-speci�city
value of a larger set: the minimum capacity associ-
ated. However, this is not a problem because we do
not add non-speci�city. In an extreme case, like the
one in the following example, we may see that the
added probabilities do not decrease the speci�city of
the associated c.s.p.d.

Example 1. Let C be a c.s.p.d. on X = fx1; x2; x3g
such that it is the set of convex combinations of
the vertices f(0; 0; 1); (0:5; 0:5; 0)g. Then, let f(A) =
Inf
P2C

P (A); 8A 2 }(X) its associated capacity.

Then, it coincides with the associated capacity of
the set, C 0, of convex combinations of the vertices
f(0:5; 0:5; 0); (0:5; 0; 0:5); (0; 0:5; 0:5); (0; 0; 1)g.

These can be seen in a simplex representation in Fig
1 and Fig 2, respectively. It is clear that C � C 0

and that the inclusion is strict. However, we consider
that there are no di�erences in the amount of impre-
cision in both cases. Having probability distributions
(0; 0; 1) and (0:5; 0:5; 0), then the other distributions,
(0; 0:5; 0:5) and (0:5; 0; 0:5), do not add imprecision.
In convex set C, there is a mass of 1 which can be
moved from x3 to x1 and x2 (half of the mass to each
one of them). With the new probability distributions
the same mass can move from x3 to these elements,
but now it is possible that half of the mass moves
�rst to one element and then to the other afterwards.
That is, from (0; 0; 1) we can obtain (0; 0:5; 0:5) and
then (0:5; 0:5; 0) if we move �rst to x2 and then to
x1, or from (0; 0; 1) we can obtain (0:5; 0; 0:5) and
then (0:5; 0:5; 0) if we move �rst to x1 and then to
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x2. Allowing to move the mass in two steps do not
add imprecision: the moved mass and the initial and
�nal points are the same.

Perhaps, if one thinks that the imprecision of both
sets should be di�erent, this could be due to the fact
that they have really di�erent dimensions and the area
of C is 0, while the area of C 0 is greater than 0. But as
we have said, the amount of imprecision is not equal
to the volume (or area in the case of two dimensions).
Very di�erent volumes can have similar amount of
imprecision. Something similar happens in the D-S
theory. If we consider m and m0 b.p.a.s on the same
set X; such that:

m fx1; x2g = 1 and m(A) = 0 if A 6= fx1; x2g

m0 fxi; xjg =
1

3
; 8i; j; and

m0(A) = 0 if A 6= fxi; xjg ;

there is a noticeable di�erence between the dimen-
sions of these sets and yet, I(m) = I(m0) = ln(2):

The variation of uncertainty between C and C 0 is of
randomness type.

DEFINITION 5. Let C be a c.s.p.d. on a universal
X � Y . Then

CX =

8<:pX : 9p 2 C such that pX(x) =
X
y2Y

p(x; y)

9=;
is called the marginal c.s.p.d. of C on X , where
PrX(A) is the projection of the set A 2 X � Y on
X . Analogously for CY .

DEFINITION 6. Let C be a c.s.p.d. on a universal
X � Y , let m be an assignment of masses on C. Let
CX and CY be its marginals c.s.p.d. and mX and
mY its assignments of masses respectively. We say
that there is random set independence under C i�
m(A�B) = mX(A)mY (B), with A 2 X and B 2 Y:

3.1 Properties

With the above notation, function IG satis�es the
same properties as function I , [6].

Property 1. It is zero for probability distributions.

Proof. It is immediate because m(A) = 0 8A � X

such that jAj � 2:

Property 2. It is monotonic, i.e. if C and C 0 are
two c.s.p.d. on X such that C � C 0 then IG(C) �
IG(C 0):

Proof. It is an immediate consequence of Lemma 4 in
the Appendix.

Property 3. It is well de�ned, IG(C) � 0 8C c.s.p.d.
on X:

Proof. By Property 1 and Property 2.

Property 4. It is maximal for the total ignorance
with a range in [0; ln(n)], where n = jX j :

Property 5. It is additive, i.e. C is a c.s.p.d. on a
universal X � Y such that there is random set inde-
pendence under C then IG(C) = IG(CX ) + IG(CY ):

Proof. It is the same proof as for I by Dubois and
Prade [5].

Property 6. It is subadditive, i.e. if C is a c.s.p.d. on
a universal X �Y; then IG(C) � IG(CX ) + IG(CY ):

Proof. We introduce a function m0 on X � Y such
that m0(A�B) = mX(A)mY (B): It is an assignment
of masses for some C 0 c.s.p.d. on X � Y:

We now de�ne the set

CX � CY = fpXpY : pX 2 CX and pY 2 CY g



of probability distributions on X � Y; which is gener-
ally not a convex set.

Using Abellan and Moral [1] and Harmanec and Klir
[7] we have

C � convex hull of (CX � CY ) � C 0:

And by Property 2 and Property 5,

IG(C) � IG(C 0) = IG(CX ) + IG(CY ):

2

4 Conclusions

In this paper, we have shown that Dubois and
Prades's non-speci�city measure [5] may be extended
to general convex sets and that it veri�es similar prop-
erties. This process is based on assigning a lower prob-
ability, f , to a convex set of probability distributions,
and then calculating the non-speci�city using the in-
verse M�obius transformation of f .

This measure can be added with other factors of un-
certainty in order to obtain a total uncertainty mea-
sure for convex sets of probability distributions.

Appendix (proof of Property 2)

First, we need some properties of the successive dif-
ferences operator on a function real of variable real f ,
i.e.,

�k+1
h f(x) = �1

h(�
k
hf(x)); h 2 R and k 2 N

where �1
hf(x) = f(x+ h)� f(x) and �0

hf(x) = f(x)

Lemma 1. This operator is lineal, i.e.:

(1) �k
h [f(x) + g(x)] = �k

hf(x) + �k
hg(x):

(2) �k
h [�f(x)] = ��k

hf(x); � 2 IR.

Lemma 2. It satis�es the following equality:

�k
hf(x) =

kX
i=0

(�1)k�i
�
k
i

�
f(x+ ih)

Proof. By induction on k

�2
hf(x) = f(x+2h)� f(x+h)� (f(x+h)� f(x)) =

f(x+ 2h)� 2f(x+ h) + f(x):

�3
hf(x) = f(x + 3h) � 2f(x + 2h) + f(x + h) �

[f(x+ 2h)� 2f(x+ h) + f(x)] =

= f(x+ 3h)� 3f(x+ 2h) + 3f(x+ h)� f(x):

Now,

�k+1
h f(x) =

�1
h(�

k
hf(x)) =

kP
i=0

(�1)k�i
�
k
i

�
f(x + (i + 1)h) �

kP
i=0

(�1)k�i
�
k
i

�
f(x+ ih) =

= �(�1)k
�
k
0

�
f(x) +�

(�1)k
�
k
0

�
f(x+ h)� (�1)k�1

�
k
1

�
f(x+ h)

�
+

+
�
(�1)k�1

�
k
1

�
f(x+ 2h)� (�1)k�2

�
k
2

�
f(x+ 2h)

�
+

:::+ (�1)k�k
�
k
k

�
f(x+ (k + 1)h) =

= (�1)k+1
�
k
0

�
f(x) + (�1)k+1�1

�
k+1
1

�
f(x + h) +

(�1)k+1�2
�
k+1
2

�
f(x+ 2h) + :::+

+(�1)k+1�(k+1)
�
k+1
k+1

�
f(x + (k + 1)h) =

k+1P
i=0

(�1)k+1�i
�
k+1
i

�
f(x+ ih): 2

Lemma 3. Let f(x) = ln(x), h = 1 and x � 1; then
�2k
1 f(x) � 0 and �2k+1

1 f(x) � 0 8k:

Proof. We know that the derivates of f(x) satis�es
that f (2k)(x) � 0 and f (2k+1)(x) � 0: Then f (2k) is
always a concave function and f (2k+1) a convex func-
tion.

Let g1(x) = �2
1f(x) = f(x + 2) � 2f(x + 1) + f(x).

Since f 00 is a concave function then

1

2
f 00(x+ 2) +

1

2
f 00(x) � f 00(x+ 1)

and

g001 (x) = f 00(x+ 2)� 2f 00(x+ 1) + f 00(x) � 0:

Hence g1(x) is a concave function.

Repeating the process, we have that

g
(2k+2)
1 (x) =

f (2k+2)(x+2)� 2f (2k+2)(x+1)+ f (2k+2)(x) � 0; 8k

and g
(2k)
1 (x) is a concave function.

Analogously, we can de�ne gj(x) = �2
1gj�1(x) and

then g
(2k)
j (x) are concave functions 8k and j = 1; 2; :::,

where we call g0(x) = f(x).

By the concavity property,

�2
1f(x) = f(x+ 2)� 2f(x+ 1) + f(x) � 0

�4
1f(x) = �2

1g1(x) = g1(x+2)�2g1(x+1)+g1(x) � 0

....................................................................................



�2k
1 f(x) = �2

1gk�1(x) = gk�1(x+2)�2gk�1(x+1)+
gk�1(x) � 0:

Using a similar argument, g
(2k+1)
j (x) are convex func-

tions, 8k; j, and we have that

g
(2k+1)
j (x) =

g
(2k+1)
j�1 (x + 2)� 2g

(2k+1)
j�1 (x+ 1) + g

(2k+1)
j�1 (x) � 0:

Hence g
(2k)
j are non-decreasing functions, 8k; j:

Obviously, if w(x) is an non-decreasing function then
�1
1w(x) � 0: Now,

�2k+1
1 f(x) = �1

1(�
2k
1 f(x)) = �1

1(gk�1(x)) � 0 2

Lemma 4. Let f; f 0 be two monotonous capacities
on a universal X: Let m;m0 be its M�obius inverses
respectively. If exist A 2 X such that f(A) � � =
f 0(A) , � > 0; and f(B) = f 0(B) for B 6= A; then

X
C�X

m(C) ln(jCj) �
X
C�X

m0(C) ln(jCj)

Proof. It is easy to prove that

X
C�X

m0(C) ln(jCj)�
X
C�X

m(C) ln(jCj) =

��
X
C�A

(�1)jC�Aj ln(jCj):

If we denote x = jAj and N = jX j � x, then we have:

X
C�A

(�1)jC�Aj ln(jCj) =

NX
i=0

(�1)i
�

N

i

�
ln(x+ i) =

(�1)N
NX
i=0

(�1)N�i
�

N

i

�
ln(x+ i) =

(�1)N�N
1 ln(x);

by Lemma 2.

Now, by Lemma 3

X
C�X

m0(C) ln(jCj)�
X
C�X

m(C) ln(jCj) =

(��)(�1)N�N
1 ln(x) � 0: 2

Now, Property 2 is an immediate consequence of this
Lemma 4.

References

[1] J. Abellan and S. Moral. Completing a total un-
certainty measure in D-S theory. Int. J. General
System, 1999 (to appear).

[2] A. Chateauneuf and J.Y. Ja�ray. Some charac-
terizations of lower probabilities and other mono-
tone capacities through the use of M�obius Inver-
sion. Math. Soc. Sc., 17:263-283, 1989.

[3] G. Choquet. Th�eorie des capacit�es. Ann. Inst.
Fourier, Grenoble, 5:131-292, 1953/54.

[4] A.P. Dempster. Upper and lower probabilities in-
duced by a multivaluated mapping. Ann. Math.

Statistic 38:325-339, 1967.

[5] D. Dubois and H. Prade. A note on measure of
speci�city for fuzzy sets. BUSEFAL, 19:83-89,
1984.

[6] D. Dubois and H. Prade. Properties and mea-
sures of information in evidence and possibil-
ity theories. Fuzzy Sets and System, 24:183-196,
1987.

[7] D. Harmanec and G.J. Klir. Measuring total un-
certainty in Dempster-Shafer Theory: a novel ap-
proach. Int. J. General System, 22:405-419, 1994.

[8] R.V.L. Hartley. Transmission of information. The
Bell Systems Technical Journal 7:535-563, 1928.

[9] S. Kullback. Information Theory and Statistics.
Dover, 1968.

[10] Y. Maeda and H. Ichihashi. An uncertainty mea-
sure with monotonicity under the random set in-
clusion. Int. J. General System, 21:379-392, 1993.

[11] T.H. Mattheiss and D.S. Rubin. A survey and
comparison of methods for �nding all vertices of
convex polyhedral sets. Math. Oper. Res. 5:167-
185, 1980.

[12] G. Shafer. A Mathematical Theory of Evidence.
Princeton University Press, Princeton, 1976.

[13] C.E. Shannon. A mathematical theory of com-
munication. The Bell System Technical Journal

27:379-423,623-656, 1948.



[14] R.R. Yager. Entropy and speci�city in a mathe-
matical theory of evidence. Int. J. General Sys-
tem 9:249-260, 1983.

[15] P. Walley. Statistical Reasoning with Imprecise

Probabilities. Chapman and Hall, London, 1991.

[16] L.A. Zadeh. Fuzzy sets as a basis for a theory of
possibility. Fuzzy Sets and Systems 1:3-28, 1978.


