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we need to find a meaningful way of measuring relevant
Abstract uncertainty in any situation formalizable within the theory.

The paper deals with basic issues regarding théo‘t the fourth leve] we need to develop methodological

. spects of the theory, including procedures for making the
measurement of relevant types of uncertainty and . . T , o
) . . , arious uncertainty principles operational within the
uncertainty-based information in theories that represen

imprecise probabilities of various types. Existing results heory. The scope of applicability of any particular
P P e YPes. gr uncertainty theory, assumed to be sufficiently developed at
and encountered difficulties regarding these issues

primarily in evidence theory and possibility theory, are each of the four levels, is determined by its generality.

presented. Some important open questions and unexplor

areas of research in this domain are also discussed. elqadmonally, it was taken for granted that uncertainty is

adequately captured by probability theory as
Keywords. Imprecise probabilities, uncertainty measures,frj‘x'omat'c"’Illy developed by Kolmogorov [12]. However, it

uncertainty-based information, evidence theory, possibilityIS more and more recognized that the concept of

theory, Hartley-like measure, Shannon-like measure uncertainty s too broad to be captured by probab|_||ty
theory alone. As is well known, a number of alternative

) ) uncertainty theories have been proposed since at least the
1 Uncertainty and Uncertainty-Based 1970s. A common difference of these theories from
Information probability theory is that they do not abide by the
The concepts of uncertainty and information as  additivity axiomof probability theory. This means, in turn,
understood in this paper, are intimately connectedthat they cannot be based on the classical measure theory,
Uncertainty involved in any problem-solving situation is a Which deals with additive measures. They require a more
result of some information deficiency. Information general measure theory, which can deal witinadditive
pertaining to the situation can be obtained via any actiorineasures It is usually required that the measures be
by which the uncertainty is reduced. Viewing the conceptmonotonic with respect to set inclusion and continuous or
of uncertainty as primary, the concept of information maySemicontinuous; a theory dealing with measures of this
then be defined in terms of uncertainty reduction. Thiskind is usually called fuzzy measure theo[2].
particular conception of information is usually referred to
asuncertainty-based informatidi8]. 2 Precise and Imprecise Probabilities

. , . In classical probability theory, elementary events are
To develop a fully operational theory for dealing with yequired to be pairwise disjoint and the probability of each
uncertainty of some conceived type, we must address @& required to be expressed precisely by a real number in
host of issues at four distinct levels. At tivst level we  the unit interval [0, 1]. This precision requirement of
need to find an appropriate mathematical representation Qfiassical probability theory, which is a consequence of the
the conceived type of uncertainty. At thecond levelwe  4qgitivity axiom, is often difficult to satisfy. This difficulty

need to develop a calculus by which this type ofnay pe a result of unavoidable measurement errors,
uncertainty can be properly manipulated. Attied level jnsufficient  statistical  information, missing  data,



conflicting evidence, etc., and it is particularly severeA of X. It was shown by Hartley [2] that the only sensible

when instead of measurements we are dependent omay to measure the amount of uncertainty in this situation

assessments based on subjective human judgements. Boto use function H defined by the simple formula

alleviate this difficulty of precise probabilities, we need to H(A) = logA [ (1)

relax on the precision requirements and allow us to expressrovided that the measurement unit isifg [A [denotes

the individual probabilities imprecisely. the cardinality of set A. The uniqueness of H(A) is also
well established on axiomatic grounds [8].

The imprecision in expressing probabilities introduces a

new dimension into the formalization of uncertainty andThe type of uncertainty quantified by the Hartley measure

uncertainty-based information. The first throughout studyis well captured by the termonspecificity Uncertainty in

of imprecise probabilities was taken by Walley [21]. His the described situation results from the lack of specificity

principal result is a demonstration that reasoning andn characterizing the true alternative. The larger the set of

decision making based on imprecise probabilities satisfyrossible alternatives the less specific is the

the principles of coherence and avoidance of sure losgharacterization. Full specificity is obtained when only one
which are generally viewed as principles of rationality. alternative is possible.

Hence, the requirement of precision (or, equivalently, the

additivity axiom) can not be justified as inevitable for The classical Shannon measure applies to uncertainty
rationality, as previously believed. The soundness of usingormalized in terms of a probability distribution
imprecise probabilities is based on this important result. p= <p(x)|x 0 X> defined on a finite set X of alternatives

It is recognized that imprecise probabilities of different (elementary events) under consideration. Is was shown by
types exist and they require different methodologicalShannon [18] that the only meaningful way to measure the
treatments. The imprecision of probabilites can beamount of uncertainty in any situation characterized by the
expressed, for example, by closed intervals of reaProbability distributionp is to use the functional S defined
numbers or by fuzzy intervals with various special Py the formula

properties. Some particular theories of imprecise S(p)=—§p(x)logzp(x), 2
probabilities are already well developed at the first two XOX

levels. They include the evidence theory developed byrovided that the measurement unit is the bit. The
Shafer [17], possibility theory [1], interval-valued uniqueness of ] has been well established in numerous
probability  distributions  [13], fuzzy probability ways on axiomatic grounds [8].

distributions [14], and a theory based @mmeasures

introduced by Sugeno [20]. However, none of theseThe Shannon measure may also be expressed in the form

theories is sufficiently developed at the third level -- the S(p) = _z p(x) log,[1- z p(y)]. (3)
level of measuring uncertainty and the associated S G
uncertainty-based information. The purpose of this paper i§he term

to present an overview of obtained results, encountered _

difficulties, and open problems in this area. c(x) = yZXp(y)

; . in Eqg. (3) represents the total evidential claim that fully
3 Classical Measures of Uncertainty conflicts with the one focusing on alternative x. The

Two of the well established measures of uncertainty ar@unction
now considered as classical. One of them, calleidrdey - log, [1- c(X)],

measure applies to uncertainty formalized in terms of which is employed in Eq. (3) is monotonic increasing with
classical (crisp) possibility theory. The other one, _called 3(x) and extends its range from [0, 1] to §6]; hence, it
Shannon measure(or Shannon entropy), applies 10 represents the same conflict on a different scale. The use of
uncertainty formalized in terms of classical (precise)ine |ogarithmic function is a consequence of the axiomatic
probability theory. requirements that function S must satisfy.

The classical Hartley measure quantifies the mosii follows directly from (3) that S() may be viewed as the
fundamental type of uncertainty, one expressed in terms Qfeighted average of the conflict among evidential claims
a finite set of possible alternatives. To describe fchls type Oéxpressed bp. As discussed later in this paper, this view
uncertainty, let X denote the set of all alternatives undeg the Shannon measure was accepted as a base for

consideration (predictions, retrodictions, diagnoses, etc.)yeriving Shannon-like measure of uncertainty in evidence
In each situation, only one of the alternatives is true, bUEheory and possibility theory.

we do not necessarily know which one. However, we may
know, on the basis of all available evidence, that the only
possible candidates for the true alternative are in a subset



4 Other Established Measures of Uncertainty

Using the classical measures of uncertainty introduced i
Sec.3 as a basis, a search for their counterparts in evideng
theory and possibility theory has been pursued b
numerous researchers. Thus far, only the counterparts (

r;I'he Hartley-like measure in possibilitheory may also be
épressed by Eq.(4). However, since possibilistic bodies of
vidence are based on nested sets of focal elements,
glarious special and computationally more efficient forms

generalizations) of the Hartley measure in these theorie f]pfﬁ'?msgﬁt:ﬁr“e%'“;et msfaf#;eﬁgpﬂgﬁ'l% bﬁ]ggmeed
have been discovered and fully justified on intuitive . P property y

grounds as well as by rigorous axiomatic treatments. The ven by Eq'(4) IS tha_t it is additive and subagidi_tive under
counterparts of the Hartley measure are convenient! € calguh of both evidence t_he_(_)ry and p033|_b|I|ty theory.
called Hartley-like measures To discuss them, the he uniqueness of the possibilistic Hartley-like measure
following notation and terminology is used" basic Was proven on axiomatic grounds by Klir and Mariano in

knowledge of evidence theory, at least as covered by Klil6]'
and Wierman in [8], is assumed. The Hartley measure H is applicable only to finite sets. Its
The universal set under consideration (often called a framgounterpart, H f?r convex subsets of the n_-dlmensmnal
of discernment in evidence theory) is denoted in this papeFuclidean space” (n 2 1) was proposed by Klir and Yuan
by X. The three basic functions of evidence theotyelief ~ in [11]. For any convex subset A mf and some & 1, H,
functions plausibility functions and basic probability  is defined by the formula

assignment functions- are denoted by Bel, Pl, and m ) n n O
respectively. These functions map subsets of X to the unit Hn(A) = rtr&lTnlnﬁjl[l+ H(ADT+R(A) - iljl”(AiI )H ®)
interval [0, 1]. Each subset A of X for which m(A) > 0 is
called afocal elementand the set of all focal elements where denotes the Lebesgue measure, T denotes the set
induced by m together with the associated values opf all transformations from one Orthogonal coordinate
function m is called &ody of evidenceThe set of all focal —System to another, anléiit denotes the i-th projection of A

elements induced by m is denoted by F(m). in coordinate system t. It has been proven that function H

o ) ] ) possesses all properties that a measure of uncertainty is
Each situation for which the Hartley measure is applicabléypected to possessnonotonicity with respect to set

may be viewed from the standpoint of evidence theory as chlusions,subadditivity additivity (proven only for n< 3
simple body of evidence that consists of a single foca y Klir and Yuan [11], but proven later for any>n1 by

element, the_ set A. To measure non_spemﬂcny of arbrrrarygamer [15])continuity, andcoordinate invariance
bodies of evidence, we need a function by which values o

the Hartley measure for all focal elements are pr(_)perlxn practical applications, as is argued in [23], the universal
aggre_gated. The most natural way of aggregation in thi et involved is usually not the full spagg, but a finite n-
case is to take the average of these values, weighted by the . ) o
associated values of the basic probability assignmen |men3|on§I hypercube X whose S|_des represent specified
function m. This is perfectly meaningful since the values@19esly;,Vi] of the numerical variables ¢ = 1, 2, ...,
of function m are required to add to 1.THartley-like n) employed in each application. In such cases, it is useful
measurein evidence theory, HL, is then for each m to compute normalized versiong,, of variables vby the
defined by the formula formula

HL(m) = m(A)log,|A| . 4 V: — V.

(M= ¥ mia)iog|A (4) 7=07Y =ta.,

This measure is justified not only on intuitive grounds, but =i )
also on mathematical grounds. It satisfies all the following@"d rescale thus X to the unit hypnercube [0.Then, we
essential mathematical properties: fijoadditivitys) the ~ have R (A) T [0, 1] for any AT [0,1]"
value of HL for any joint body of evidence is always )
smaller than or equal to the sum of the values of HL for the® counterpart, HL, of the Hartley-like measure HL for the

associated marginal bodies of evidence: ddjitivity O n-dimensional Euclidean space is obviously expressed by

=<

the equality in (i) is obtained iff the joint body of evidence the formula
is based on noninteractive marginal bodies of evidence; HL,(m) = 5 m(A)H, (A), (6)
(iiiy monotonicityd if [ny,F0O0 [, FO(as defined in ALF(m)

evidence theory), then HL@n< HL(m,) ; (iv) minimum  provided that F(m) is finite and all sets in F(m) are convex
O HL(m) = 0 iff m{x}) = 1 for some xO X; (v)  Sets.

maximum@ HL(m) =Iogz|X| iff m(X) = 1. Moreover, The application of uncertginty measurg d¢an be
extended to convex fuzzy sets via the coherent fuzzy-set

Fllé]was proven unique on axiomatic grounds by Ramefinterpretation of possibility theory introduced by Kiir [5].



For each convex fuzzy set F defined on a convex universalias to add the well-justified Hartley-like measure with one

set XOR", H, is expressed by the formula of the proposed candidates for the Shannon-like measure.
he Again, the sums HL + ST and HL + D emerged as the best

H,(F) = _[Hn(aﬂda +(1-hp)H, (X), (7) candidates on intuitive grounds, one for disjunctive set-

2 valued propositions and one for conjunctive set-valued

where®F denotes the-cut of F ¢ 0 [0, 1]) and h is the proposition. And, again, these functions were found to
height of F [9]. ’ possess all mathematical properties required for

uncertainty measures except subadditivity.

5 Encountered Difficulties A measure of total uncertainty in evidence theory that
Considering probabilistic bodies of evidence, whose focabossesses all the required mathematical properties was
elements are singletons, it is obvious that HL(m) = O foreventually found (independently by several authors at
any probability measure. This clearly demonstrates thaibout the same time), but not as a composite of measures
probability theory is not capable of representingof uncertainty of the two types. This aggregate uncertainty
nonspecificity. It represents a different type of uncertainty,measure, AU, is defined for each belief function Bel on the
one associated with the conflict among evidential claimgyower P(X) set of X by the formula
within a given probability distribution, for which the 0 0
Shannon measure is well established. AU (Bel) = max+ z p, l0g, p, 5 (10)

sl [ xO%
So far, the search for a Shannon-like measure in evidenGghere the maximum is taken over the set, Pf all

theory and possibility theory has not beencessful, even  propapility distributionsp,IxOXCthat are consistent with
though this issue is extensively addressed in the literaturgne given belief measure Bel, which means that they
An historical overview of this unsuccessful search is givensatisfy the constraint

in the book by Klir and Wierman [8]. Bel(A) < g o, for all AT P(X) (11)
_ X 1
xUA

From several functions propo_sed in_the I|_teratu_re 33 addition to the usual axiomatic constraints of probability
candidates for the Shannon-like measure in evidenc

theory, two eventually emerged as the best justified On%lstnbutlons. An efficient algorithm for computing this

intuitive grounds. These measures, referred tstrife and aggregate uncertainty measure is available [8].
discordand denoted by ST and D, respectively,

are deflr1e(}3\lthough the function AU is acceptable on mathematical
by the formulas

grounds as an aggregate measure of uncertainty in
ST(m) =- z m(A)log, m(B) |A n B| . ® evidence theory a_md possibility theory, some fundar_nentgal
questions regarding the measurement of uncertainty in

AUR(m) BUF(m) |A| . . .
these theories still remain to be answered.

AnB
D(m)=- " m(A)log, 5 ANE JALAL B
AUR(m) BUF(m) |B|
As shown by Klir and Yuan [10], the distinction between
strife  and discord reflects the distinction between
disjunctive and conjunctive set-valued propositions,
respectively.

It is conceptually well understood that situations described
in terms of evidence theory involve, in general, two types
of uncertainty. However, only one of them, which is

appropriately called nonspecificity, is well understood on
both intuitive and mathematical grounds, and it is
quantified by the well-justified Hartley-like measure. The

second type of uncertainty in evidence theory, the one
pbtained by generalizing the uncertainty quantified in
probability theory by the Shannon measure, is still ill-

understood.

Strife and discord seem to be perfectly justified on
intuitive grounds as measures of conflict among evidentia
claims within each given body of evidence when dealing
with either disjunctive or conjunctive set-valued

ropositions, respectively. They also satisfy all the ) _ . .
prop P y y fy All attempts to find a Shannon-like measure in evidence

required mathematical roperties except one -- . .
q prop P theory were based on the assumption that this measure

subadditivity -- one of the essential properties of ) . . . . .
uncertainty measures. In fact, none of the other proposeﬁhOUId quant|fy the confll_ct among de_ennal claims in
ach given body of evidence. This is a reasonable

candidates for the Shannon-like measure satis . .
subadditivity either assumption suggested by the Shannon measure itself.
' However, none of the proposed measures of evidential

The long, unsuccessful, and often frustrating search for thgonﬂ'Ct in evidence theory, some of which are

Shannon-like measure of uncertainty in evidence theor;?oncegtuiﬁ/ wel(lj-;gszlfle?, frfa:esprt]able or}_linathematlczilh i
was in the early 1990s replaced with the search for grounds. candiaates for the shannon-iike measure tha

justifiable measure of total uncertainty. The first attempt



were proposed in the literature violate some mathematicgbhannon-like measures in these two theories remains an
properties essential for any measure of uncertainty. open question.

Hence, no Shannon-like measures in evidence theory antis quite surprising that none of the proposed candidates
possibility theory have been found so far. While functionfor the Shannon-like measures satisfies the essential
AU is acceptable as an aggregate measure of uncertainty requirement of subadditivity. This consistent violation of
these theories, we do not know how to decompose it intgubadditivity raises a fundamental question: It is really
measures of the two types of uncertainty that in thes@mecessary to require that the Shannon-like measure alone
theories manifestly coexist. This remains an open questiorbe subadditive? Perhaps we need to require that only the
total uncertainty be subadditive, as suggested by the
Although function AU is acceptable on mathematical following example.
grounds as an aggregate measure of uncertainty in
evidence theory and possibility theory, it is rather Let the frame of discernment be the Cartesian product X
insensitive to changes in evidence that seem significant o, where X = {1,2} and Y = {a, b}, and let us consider a
intuitive grounds. To illustrate this undesirable feature ofjoint body of evidence that consists of two disjoint focal
the function, let us examine a very simple example. Let Xelements with

= {X1, X} and m({x}) = a, m(X) = I-a. Then, Bel ({X}) m({1a, 2b}) = m({2a, 1b}) = 0.5.
= a, Bel({x}) = 0, Bel (X) =1, and AU(Bel) = 1 for all a Then, clearly,
0 [0, 0.5]. Increasing evidence focusing on the alternative mx({0, 1}) =land iy (fa, b}) =1

x; from 0 to 0.5 is thus not captured by the value of AU. are basic probability assignments of the associated
marginal bodies of evidence. In this case, it is obvious that

One additional undesirable feature of the aggregatéhe joint body (two disjoint elements with equal

measure AU should be mentioned. The measure does nptobabilities) contains 1 bit of conflict in evidence, while

take into account differences in convex sets of probabilitthe marginal bodies do not contain any conflict. Every

distributions that are consistent with the various bodies oShannon-like measure should give these results (in fact, all

evidence. Thus, for example, the situation of totalthe proposed candidates give them). Hence, no Shannon-

ignorance, when m(X) = 1, has the same value of AU asike measure can be subadditive in this case. However, we

the situation characterized by the uniform probability have

distribution m({x}) = 1/ X[for all x O X. However, these HL(m) = 1 and HL(ny) = HL(my) = 1

two situations are associated with very different sets ofn this example and, consequently, the subadditivity

probability distributions. In the first situation, the set requirement is satisfied if we consider both types of

consists of all probability distributions that can be defineduncertainty that coexist in evidence theory. Unfortunately,

on X; in the second situation, the set consists of a singl@one of the proposed candidates satisfies this more

probability distribution, the uniform one. This is an reasonable formulation of the subadditivity requirement.

important difference, at least from the behavioral point of

view. While the second situation contains information forA new candidate for the Shannon-like measure, SL, is

rational betting, no such information is available in thedefined by the formula

first situation. This difference was recently examined 1

(independently of evidence theory) by Kapur et al.[3], who SL(Bel) = s Z[Bel({x}) log, Bel({x}) + (12)

suggested to express it in terms of the difference between X

the maximal and minimal values of the Shannon measure PI({x}) log, PI({x})].

under given constraints. It seems reasonable that thwhere

minimal values of the Shannon measure for given bodies c= Z[Bel({x}) + PI{x})],

of evidence could be utilized in some way to formulate a XOX

more sensitive aggregate measure of uncertainty imand

evidence theory. However, whether minimizing the PI({x}) = 1 - Bel(X —{x})

Shannon measure can actually be utilized for this purposgyr all x 0 X. This candidate seems to behave exactly as it

is another open question. should, and it has so far withstood extensive testing of the
subadditivity requirement involving the total uncertainty

6 Open Questions in Previous Research SL + HL. However, the subadditivity of this total

In spite of the rather long quest for the Shannon-like“”ce_”ai”ty has not been proven as yet. Moreover, bodies

measures in evidence theory and possibility theory, wf evidence theory are not fully represented by beliefs and

have not been successful in finding these measures. EaBigusibilities on singletons.

of the many proposed candidates has some defect, be it

conceptual or mathematical. Hence, the nature of the



One possible direction, worth of pursuing, is to explore theby Sugeno [20]. For this subset of belief functions, any
linear combination, g of the aggregate measure AU and belief function is uniquely determined by its values on
the Hartley-like measure of nonspecificity HL, singletons.
Cg(Beln) = BAU(Bely) + (1 ) HL(m), (13)

for various values of the paramefetd [0, 1]; Bel,in (13) Uncertainty represented in termskefmeasures is one area
denotes the belief measure associated with the basi® which the measurement of uncertainty has not been
probability assignment m. Clearly,; @ollapses to HL or investigated as yet. Another area that have not been
AU whenp = 0 or 1, respectively. Since both HL and AU explored in this sense is the area of imprecise probabilities
are additive and subadditive functions, the additivity andn Which imprecise probabilities are represented by
subadditivity of G is guaranteed. Since the range of both feasible interval-valued probability distributions [13] or

. ) fuzzy probability distributions [14]. It seems that
AU and HL |s[0, |092|X|J for any m defined on P(X), the requirements for the measure of uncertainty in this area

range of their linear combinations (for gByis the same. may be formulated in the same way as in classical
probability theory, but applying constrained interval or

It is obvious that function Cdefined by (13) is an fuzzy arithmetic [4,7]. This will inevitably lead to

aggregate measure of uncertainty for gny (0, 1). This  challenging mathematical and computational issues.

measure is more sensitive to changes in evidence than the

current measure AU. This can be illustrated by using th&here are of course other areas of imprecise probabilities.

same body of evidence by which the insensitivity of The issue of how to measure uncertainty and uncertainty-

measure AU was exemplified: X = £xx}, m({x}) = a, based information has not been even raised in these areas.

m(X) = 1-a. In this case, clearly,sdBel,) = 1-a(1) This is thus a fertile field for future research.

while AU(Bel,) = C(Bel,) = 1 for all ad [0, 0.5].The
difference is even more pronounced when njj{x a, A measure of uncertainty-based information for evidence

m({x2}) = b, and m({x, x2}) = 1-a-b. Then, G (Bel,) = theory, which is fundamentally different from the
1-a (1B ) - b(1-B ), while AU(Bel) = Ci(Bel,) = 1 for ~ described measures, was proposed by Smets [19]. He
all a0l [0, 0.5] and b0 [0, 0.5]. formulated requirements for such a measure without

considering bodies of evidence on Cartesian products.
Hence, his formulation does not contain the usual

Measure @ is obviously preferable to AU from the ; L e
standpoint of its sensitivity to changes in evidence.'éduirements of additivity and subadditivity. Instead, he
equires that the information content of two non-

However, its meaning is not transparent. It seems thalt tradict bodi f evid be th h
different values of 3 will be needed for different contracictory bodies of evidence be he same as ihe

interpretations of DST. How to determine the right Valuesmformatlon content of the combined body of evidence

of B for the various interpretations is an issue to beobtained by the Dempster rule of combination [17], in
invgstigated P addition to monotonicity and appropriate boundary

conditions. Under these requirements, Smets shows that

When all focal elements are sinaletons and. hence. m is the only meaningful measure of information in bits is a
9 ' ' fliinction denoted by I and defined by the formula

probability distribution function, gassumes the form I(Bel) = - l0g, O(A) (14)
Cg(Bely,) =B me({x}) log, m({x}). ADZ(X) ?

for each given non-dogmatic belief function Bel on P(X),

Clearly, this is the Shannon measure, as in the case of A .. m(X) > 0 and, hence, Q(X) > 0), where Q denotes the

but sc?leg c:own_ bydthe ft?]ctor ﬁftThte \:calue EB’ erl.ent. commonality function [17]. Since the kind of
properly determined in theé context ob each applicalion,, ;7 ation employed in the Dempster rule of

may conveniently capture the difference between the tOtaéombination is rather controversial [24], the justification of

|gn_forance %ng_l_tthed_etv[tk:l)e?ce expressed in terms of thﬁ]e measure of information given by (14) is controversial
uniform probability distribution. as well. Nevertheless, the issue of connecting a measure of

information in evidence theory with a rule of combination
7 Unexplored Areas (not necessarily the Dempster rule) is worth investigating.
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