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Abstract
The paper deals with basic issues regarding the
measurement of relevant types of uncertainty and
uncertainty-based information in theories that represent
imprecise probabilities of various types. Existing results
and encountered difficulties regarding these issues,
primarily in evidence theory and possibility theory, are
presented. Some important open questions and unexplored
areas of research in this domain are also discussed.
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1 Uncertainty and Uncertainty-Based
Information
The concepts of uncertainty and information, as
understood in this paper, are intimately connected.
Uncertainty involved in any problem-solving situation is a
result of some information deficiency. Information
pertaining to the situation can be obtained via any action
by which the uncertainty is reduced. Viewing the concept
of uncertainty as primary, the concept of information may
then be defined in terms of uncertainty reduction. This
particular conception of information is usually referred to
as uncertainty-based information [8].

To develop a fully operational theory for dealing with
uncertainty of some conceived type, we must address a
host of issues at four distinct levels. At the first level, we
need to find an appropriate mathematical representation of
the conceived type of uncertainty. At the second level, we
need to develop a calculus by which this type of
uncertainty can be properly manipulated. At the third level,

we need to find a meaningful way of measuring relevant
uncertainty in any situation formalizable within the theory.
At the fourth level,  we need to develop methodological
aspects of the theory, including procedures for making the
various uncertainty principles operational within the
theory. The scope of applicability of any particular
uncertainty theory, assumed to be sufficiently developed at
each of the four levels, is determined by its generality.

Traditionally, it was taken for granted that uncertainty is
adequately captured by probability theory, as
axiomatically developed by Kolmogorov [12]. However, it
is more and more recognized that the concept of
uncertainty is too broad to be captured by probability
theory alone. As is well known, a number of alternative
uncertainty theories have been proposed since at least the
1970s. A common difference of these theories from
probability theory is that they do not abide by the
additivity axiom of probability theory. This means, in turn,
that they cannot be based on the classical measure theory,
which deals with additive measures. They require a more
general measure theory, which can deal with nonadditive
measures. It is usually required that the measures be
monotonic with respect to set inclusion and continuous or
semicontinuous; a theory dealing with measures of this
kind is usually called a fuzzy measure theory [22].

2 Precise and Imprecise Probabilities
In classical probability theory, elementary events are
required to be pairwise disjoint and the probability of each
is required to be expressed precisely by a real number in
the unit interval   [0, 1]. This precision requirement of
classical probability theory, which is a consequence of the
additivity axiom, is often difficult to satisfy. This difficulty
may be a result of unavoidable measurement errors,
insufficient statistical information, missing data,



conflicting evidence, etc., and it is particularly severe
when instead of measurements we are dependent on
assessments based on subjective human judgements. To
alleviate this difficulty of precise probabilities, we need to
relax on the precision requirements and allow us to express
the individual probabilities imprecisely.

The imprecision in expressing probabilities introduces a
new dimension into the formalization of uncertainty and
uncertainty-based information. The first throughout study
of imprecise probabilities was taken by Walley [21]. His
principal result is a demonstration that reasoning and
decision making based on imprecise probabilities satisfy
the principles of coherence and avoidance of sure loss,
which are generally viewed as principles of rationality.
Hence, the requirement of precision (or, equivalently, the
additivity axiom) can not be justified as  inevitable for
rationality, as previously believed. The soundness of using
imprecise probabilities is based on this important result.

It is recognized that imprecise probabilities of different
types exist and they require different methodological
treatments. The imprecision of probabilities can be
expressed, for example, by closed intervals of real
numbers or by fuzzy intervals with various special
properties. Some particular theories of imprecise
probabilities are already well developed at the first two
levels. They include the evidence theory developed by
Shafer [17], possibility theory [1], interval-valued
probability distributions [13], fuzzy probability
distributions [14], and a theory based on λ-measures
introduced by Sugeno [20]. However, none of these
theories is sufficiently developed at the third level -- the
level of measuring uncertainty and the associated
uncertainty-based information. The purpose of this paper is
to present an overview of obtained results, encountered
difficulties, and open problems in this area.

3 Classical Measures of Uncertainty
Two of the well established measures of uncertainty are
now considered as classical. One of them, called a Hartley
measure, applies to uncertainty formalized in terms of
classical (crisp) possibility theory. The other one, called a
Shannon measure (or Shannon entropy), applies to
uncertainty formalized in terms of classical (precise)
probability theory.

The classical Hartley measure quantifies the most
fundamental type of uncertainty, one expressed in terms of
a finite set of possible alternatives. To describe this type of
uncertainty, let X denote the set of all alternatives under
consideration (predictions, retrodictions, diagnoses, etc.).
In each situation, only one of the alternatives is true, but
we do not necessarily know which one. However, we may
know, on the basis of all available evidence, that the only
possible candidates for the true alternative are in a subset

A of X. It was shown by Hartley [2] that the only sensible
way to measure the amount of uncertainty in this situation
is to use function H defined by the simple formula

                       H(A) = log2 A ,           (1)
provided that the measurement unit is a bit; A denotes
the cardinality of set A. The uniqueness of H(A) is also
well established on axiomatic grounds [8].

The type of uncertainty quantified by the Hartley measure
is well captured by the term nonspecificity. Uncertainty in
the described situation results from the lack of specificity
in characterizing the true alternative. The larger the set of
possible alternatives, the less specific is the
characterization. Full specificity is obtained when only one
alternative is possible.

The classical Shannon measure applies to uncertainty
formalized in terms of a probability distribution

Xx)x(p ∈=p  defined on a finite set X of alternatives

(elementary events) under consideration. Is was shown by
Shannon [18] that the only meaningful way to measure the
amount of uncertainty in any situation characterized by the
probability distribution p is to use the functional S defined
by the formula

∑
∈
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provided that the measurement unit is the bit. The
uniqueness of S(p) has been well established in numerous
ways on axiomatic grounds [8].

The Shannon measure may also be expressed in the form
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The term
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in Eq. (3) represents the total evidential claim that fully
conflicts with the one focusing on alternative x. The
function

− log2 [1− c(x)],
which is employed in Eq. (3) is monotonic increasing with
c(x) and extends its range from [0, 1] to [0, ∞]; hence, it
represents the same conflict on a different scale. The use of
the logarithmic function is a consequence of the axiomatic
requirements that function S must satisfy.

It follows directly from (3) that S(p) may be viewed as the
weighted average of the conflict among evidential claims
expressed by p. As discussed later in this paper, this view
of the Shannon measure was accepted as a base for
deriving Shannon-like measure of uncertainty in evidence
theory and possibility theory.



4 Other Established Measures of Uncertainty
Using the classical measures of uncertainty introduced in
Sec.3 as a basis, a search for their counterparts in evidence
theory and possibility theory has been pursued by
numerous researchers. Thus far, only the counterparts (or
generalizations) of the Hartley measure in these theories
have been discovered and fully justified on intuitive
grounds as well as by rigorous axiomatic treatments. These
counterparts of the Hartley measure are conveniently
called Hartley-like measures. To discuss them, the
following notation and terminology is used; basic
knowledge of evidence theory, at least as covered by Klir
and Wierman in [8], is assumed.

The universal set under consideration (often called a frame
of discernment in evidence theory) is denoted in this paper
by X. The three basic functions of evidence theory -- belief
functions, plausibility functions, and basic probability
assignment functions -- are denoted by Bel, Pl, and m
respectively. These functions map subsets of X to the unit
interval [0, 1]. Each subset A of X for which m(A) > 0 is
called a focal element, and the set of all focal elements
induced by m together with the associated values of
function m is called a body of evidence. The set of all focal
elements induced by m is denoted by F(m).

Each situation for which the Hartley measure is applicable
may be viewed from the standpoint of evidence theory as a
simple body of evidence that consists of a single focal
element, the set A. To measure nonspecificity of arbitrary
bodies of evidence, we need a function by which values of
the Hartley measure for all focal elements are properly
aggregated. The most natural way of aggregation in this
case is to take the average of these values, weighted by the
associated values of the basic probability assignment
function m. This is perfectly meaningful since the values
of function m are required to add to 1.The Hartley-like
measure in evidence theory, HL, is then for each m
defined by the formula

∑
∈
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This measure is justified not only on intuitive grounds, but
also on mathematical grounds. It satisfies all the following
essential mathematical properties: (i) subadditivity  the
value of HL for any joint body of evidence is always
smaller than or equal to the sum of the values of HL for the
associated marginal bodies of evidence; (ii) additivity 
the equality in (i) is obtained iff the joint body of evidence
is based on noninteractive marginal bodies of evidence;
(iii) monotonicity  if  〈m1,F1〉 ⊆  〈m2, F2〉 (as defined in
evidence theory), then HL(m1) ≤ HL(m2) ; (iv) minimum
 HL(m) = 0 iff m({x}) = 1 for some x ∈ X; (v)
maximum  Xlog)m(HL 2=  iff m(X) = 1. Moreover,

HL was proven unique on axiomatic grounds by Ramer
[16].

The Hartley-like measure in possibility theory may also be
expressed by Eq.(4). However, since possibilistic bodies of
evidence are based on nested sets of focal elements,
various special and computationally more efficient forms
of possibilistic Hartley-like measure can easily be derived
[8]. An important property of the Hartley-like measure
given by Eq.(4) is that it is additive and subadditive under
the calculi of both evidence theory and possibility theory.
The uniqueness of the possibilistic Hartley-like measure
was proven on axiomatic grounds by Klir and Mariano in
[6].

The Hartley measure H is applicable only to finite sets. Its
counterpart, Hn, for convex subsets of the n-dimensional
Euclidean space 5n (n ≥ 1) was proposed by Klir and Yuan
in [11]. For any convex subset A of 5n and some n ≥ 1, Hn

is defined by the formula
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where µ  denotes the Lebesgue measure, T denotes the set

of all transformations from one orthogonal coordinate
system to another, and 

tiA denotes the i-th projection of A

in coordinate system t. It has been proven that function Hn

possesses all properties that a measure of uncertainty is
expected to possess: monotonicity with respect to set
inclusions, subadditivity, additivity (proven only for n ≤ 3
by Klir and Yuan [11], but proven later for any n ≥ 1 by
Ramer [15]), continuity, and coordinate invariance.

In practical applications, as is argued in [23], the universal
set involved is usually not the full space 5n, but  a finite n-
dimensional hypercube X whose sides represent specified
ranges ]v,v[ ii   of the numerical variables vi (i = 1, 2, …,

n) employed in each application. In such cases, it is useful
to compute normalized versions, iv̂ , of variables vi by the
formula
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and rescale thus X to the unit hypercube [0,1]n. Then, we
have Hn (A) ∈ [0, 1] for any A ⊂ [0,1]n.

A counterpart, HLn, of the Hartley-like measure HL for the
n-dimensional Euclidean space is obviously expressed by
the formula

∑
∈

=
)m(FA

nn )A(H)A(m)m(HL ,          (6)

provided that F(m) is finite and all sets in F(m) are convex
sets.

The application of uncertainty measure Hn can be
extended to convex fuzzy sets via the coherent fuzzy-set
interpretation of possibility theory introduced by Klir [5].



For each convex fuzzy set F defined on a convex universal
set X ⊂ 5n, Hn is expressed by the formula

∫ −+α= α
Fh

0

nFnn ),X(H)h1(d)F(H)F(H    (7)

where αF denotes the α-cut of F (α ∈ [0, 1]) and hF is the
height of F [9].

5 Encountered Difficulties
Considering probabilistic bodies of evidence, whose focal
elements are singletons, it is obvious that HL(m) = 0 for
any probability measure. This clearly demonstrates that
probability theory is not capable of representing
nonspecificity. It represents a different type of uncertainty,
one associated with the conflict among evidential claims
within a given probability distribution, for which the
Shannon measure is well established.

So far, the search for a Shannon-like measure in evidence
theory and possibility theory has not been successful, even
though this issue is extensively addressed in the literature.
An historical overview of this unsuccessful search is given
in the book by Klir and Wierman [8].

From several functions proposed in the literature as
candidates for the Shannon-like measure in evidence
theory, two eventually emerged as the best justified on
intuitive grounds. These measures, referred to as strife and
discord and denoted by ST and D, respectively, are defined
by the formulas

∑ ∑
∈ ∈

∩
−=

)m(FA )m(FB
2 A

BA
)B(mlog)A(m)m(ST ,      (8)

∑ ∑
∈ ∈

∩
−=

)m(FA )m(FB
2 B

BA
)B(mlog)A(m)m(D ,       (9)

As shown by Klir and Yuan [10], the distinction between
strife and discord reflects the distinction between
disjunctive and conjunctive set-valued propositions,
respectively.

Strife and discord seem to be perfectly justified on
intuitive grounds as measures of conflict among evidential
claims within each given body of evidence when dealing
with either disjunctive or conjunctive set-valued
propositions, respectively. They also satisfy all the
required mathematical properties except one --
subadditivity -- one of the essential properties of
uncertainty measures. In fact, none of the other proposed
candidates for the Shannon-like measure satisfy
subadditivity either.

The long, unsuccessful, and often frustrating search for the
Shannon-like measure of uncertainty in evidence theory
was in the early 1990s replaced with the search for a
justifiable measure of total uncertainty. The first attempt

was to add the well-justified Hartley-like measure with one
of the proposed candidates for the Shannon-like measure.
Again, the sums HL + ST and HL + D emerged as the best
candidates on intuitive grounds, one for disjunctive set-
valued propositions and one for conjunctive set-valued
proposition. And, again, these functions were found to
possess all mathematical properties required for
uncertainty measures except subadditivity.

A measure of total uncertainty in evidence theory that
possesses all the required mathematical properties was
eventually found (independently by several authors at
about the same time), but not as a composite of measures
of uncertainty of the two types. This aggregate uncertainty
measure, AU, is defined for each belief function Bel on the
power  P(X) set of X by the formula
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where the maximum is taken over the set PBel of all
probability distributions 〈pxx∈X〉 that are consistent with
the given belief measure Bel, which means that they
satisfy the constraint

∑
∈

≤
Ax

xp)A(Bel for all A ∈ P(X),          (11)

in addition to the usual axiomatic constraints of probability
distributions. An efficient algorithm for computing this
aggregate uncertainty measure is available [8].

Although the function AU is acceptable on mathematical
grounds as an aggregate measure of uncertainty in
evidence theory and possibility theory, some fundamental
questions regarding the measurement of uncertainty in
these theories still remain to be answered.

It is conceptually well understood that situations described
in terms of evidence theory involve, in general, two types
of uncertainty. However, only one of them, which is
appropriately called nonspecificity, is well understood on
both intuitive and mathematical grounds, and it is
quantified by the well-justified Hartley-like measure. The
second type of uncertainty in evidence theory, the one
obtained by generalizing the uncertainty quantified in
probability theory by the Shannon measure, is still ill-
understood.

All attempts to find a Shannon-like measure in evidence
theory were based on the assumption that this measure
should quantify the conflict among evidential claims in
each given body of evidence. This is a reasonable
assumption suggested by the Shannon measure itself.
However, none of the proposed measures of evidential
conflict in evidence theory, some of which are
conceptually well-justified, is acceptable on mathematical
grounds. All candidates for the Shannon-like measure that



were proposed in the literature violate some mathematical
properties essential for any measure of uncertainty.

Hence, no Shannon-like measures in evidence theory and
possibility theory have been found so far. While function
AU is acceptable as an aggregate measure of uncertainty in
these theories, we do not know how to decompose it into
measures of the two types of uncertainty that in these
theories manifestly coexist. This remains an open question.

Although function AU is acceptable on mathematical
grounds as an aggregate measure of uncertainty in
evidence theory and possibility theory, it is rather
insensitive to changes in evidence that seem significant on
intuitive grounds. To illustrate this undesirable feature of
the function, let us examine a very simple example. Let X
= {x1, x2} and m({x1}) = a, m(X) = 1−a. Then, Bel ({x1})
= a, Bel({x2}) = 0, Bel (X) = 1, and AU(Bel) = 1 for all a
∈ [0, 0.5]. Increasing evidence focusing on the alternative
x1 from 0 to 0.5 is thus not captured by the value of AU.

One additional undesirable feature of the aggregate
measure AU should be mentioned. The measure does not
take into account differences in convex sets of probability
distributions that are consistent with the various bodies of
evidence. Thus, for example, the situation of total
ignorance, when m(X) = 1, has the same value of AU as
the situation characterized by the uniform probability
distribution m({x}) = 1/ Xfor all x ∈ X. However, these
two situations are associated with very different sets of
probability distributions. In the first situation, the set
consists of all probability distributions that can be defined
on X; in the second situation, the set consists of a single
probability distribution, the uniform one. This is an
important difference, at least from the behavioral point of
view. While the second situation contains information for
rational betting, no such information is available in the
first situation. This difference was recently examined
(independently of evidence theory) by Kapur et al.[3], who
suggested to express it in terms of the difference between
the maximal and minimal values of the Shannon measure
under given constraints. It seems reasonable that the
minimal values of the Shannon measure for given bodies
of evidence could be utilized in some way to formulate a
more sensitive aggregate measure of uncertainty in
evidence theory. However, whether minimizing the
Shannon measure can actually be utilized for this purpose
is another open question.

6 Open Questions in Previous Research
In spite of the rather long quest for the Shannon-like
measures in evidence theory and possibility theory, we
have not been successful in finding these measures. Each
of the many proposed candidates has some defect, be it
conceptual or mathematical. Hence, the nature of the

Shannon-like measures in these two theories remains an
open question.

It is quite surprising that none of the proposed candidates
for the Shannon-like measures satisfies the essential
requirement of subadditivity. This consistent violation of
subadditivity raises a fundamental question: It is really
necessary to require that the Shannon-like measure alone
be subadditive? Perhaps we need to require that only the
total uncertainty be subadditive, as suggested by the
following example.

Let the frame of discernment be the Cartesian product X ×
Y, where X = {1,2} and Y = {a, b}, and let us consider a
joint body of evidence that consists of two disjoint focal
elements with

m({1a, 2b}) = m({2a, 1b}) = 0.5.
Then, clearly,

mX({0, 1}) = 1 and mY ({a, b}) = 1
are basic probability assignments of the associated
marginal bodies of evidence. In this case, it is obvious that
the joint body (two disjoint elements with equal
probabilities) contains 1 bit of conflict in evidence, while
the marginal bodies do not contain any conflict. Every
Shannon-like measure should give these results (in fact, all
the proposed candidates give them). Hence, no Shannon-
like measure can be subadditive in this case. However, we
have

HL(m) = 1 and HL(mX) = HL(mY) = 1
in this example and, consequently, the subadditivity
requirement is satisfied if we consider both types of
uncertainty that coexist in evidence theory. Unfortunately,
none of the proposed candidates satisfies this more
reasonable formulation of the subadditivity requirement.

A new candidate for the Shannon-like measure, SL, is
defined by the formula

})],x({Pllog})x({Pl
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and
Pl({x}) = 1 − Bel(X −{x})

for all x ∈ X. This candidate seems to behave exactly as it
should, and it has so far withstood extensive testing of the
subadditivity requirement involving the total uncertainty
SL + HL. However, the subadditivity of this total
uncertainty has not been proven as yet. Moreover, bodies
of evidence theory are not fully represented by beliefs and
plausibilities on singletons.



One possible direction, worth of pursuing, is to explore the
linear combination, Cβ, of the aggregate measure AU and
the Hartley-like measure of nonspecificity HL,

Cβ(Belm) =  βAU(Belm) + (1−β ) HL(m),       (13)
for various values of the parameter β ∈ [0, 1]; Belm in (13)
denotes the belief measure associated with the basic
probability assignment m. Clearly, Cβ collapses to HL or
AU when β = 0 or 1, respectively. Since both HL and AU
are additive and subadditive functions, the additivity and
subadditivity of Cβ is guaranteed. Since the range of both
AU and HL is [ ]Xlog,0 2   for any m defined on P(X), the

range of their linear combinations (for any β) is the same.

It is obvious that function Cβ defined by (13) is an
aggregate measure of uncertainty for any β ∈ (0, 1). This
measure is more sensitive to changes in evidence than the
current measure AU. This can be illustrated by using the
same body of evidence by which the insensitivity of
measure AU was exemplified: X = {x1, x2}, m({x 1}) = a,
m(X) = 1−a. In this case, clearly, Cβ (Belm) = 1−a(1−β)
while AU(Belm) = C1(Belm) = 1 for all a ∈ [0, 0.5].The
difference is even more pronounced when m({x1}) = a,
m({x2}) = b, and m({x1, x2}) = 1−a −b. Then, Cβ (Belm) =
1−a (1−β ) − b(1−β ), while AU(Belm) = C1(Belm) = 1 for
all a ∈ [0, 0.5] and b  ∈ [0, 0.5].

Measure Cβ is obviously preferable to AU from the
standpoint of its sensitivity to changes in evidence.
However, its meaning is not transparent. It seems that
different values of β will be needed for different
interpretations of DST. How to determine the right values
of β for the various interpretations is an issue to be
investigated.

When all focal elements are singletons and, hence, m is a
probability distribution function, Cβ assumes the form

∑
∈

β β−=
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Clearly, this is the Shannon measure, as in the case of AU,
but scaled down by the factor of β. The value of β, when
properly determined in the context of each application,
may conveniently capture the difference between the total
ignorance and the evidence expressed in terms of the
uniform probability distribution.

7 Unexplored Areas
One concern about the proposed candidate (12) for the
Shannon-like measure in evidence theory is that it is fully
formulated in terms of singletons or their complements,
but a belief function of evidence theory is not determined,
in general, by its values on singletons and their
complements. However, as is well known [22], a
significant subset of belief functions and plausibility
functions can be represented by the λ-measures proposed

by Sugeno [20]. For this subset of belief functions, any
belief function is uniquely determined by its values on
singletons.

Uncertainty represented in terms of λ-measures is one area
in which the measurement of uncertainty has not been
investigated as yet. Another area that have not been
explored in this sense is the area of imprecise probabilities
in which imprecise probabilities are represented by
feasible interval-valued probability distributions [13] or
fuzzy probability distributions [14]. It seems that
requirements for the measure of uncertainty in this area
may be formulated in the same way as in classical
probability theory, but applying constrained interval or
fuzzy arithmetic [4,7]. This will inevitably lead to
challenging mathematical and computational issues.

There are of course other areas of imprecise probabilities.
The issue of how to measure uncertainty and uncertainty-
based information has not been even raised in these areas.
This is thus a fertile field for future research.

A measure of uncertainty-based information for evidence
theory, which is fundamentally different from the
described measures, was proposed by Smets [19]. He
formulated requirements for such a measure without
considering bodies of evidence on Cartesian products.
Hence, his formulation does not contain the usual
requirements of additivity and subadditivity. Instead, he
requires that the information content of two non-
contradictory bodies of evidence be the same as the
information content of the combined body of evidence
obtained by the Dempster rule of combination [17], in
addition to monotonicity and appropriate boundary
conditions. Under these requirements, Smets shows that
the only meaningful measure of information in bits is a
function denoted by I and defined by the formula

∑
∈

−=
)X(PA

2 )A(Qlog)Bel(I (14)

for each given non-dogmatic belief function Bel on P(X),
(i.e., m(X) > 0 and, hence, Q(X) > 0), where Q denotes the
commonality function [17]. Since the kind of
normalization employed in the Dempster rule of
combination is rather controversial [24], the justification of
the measure of information given by (14) is controversial
as well. Nevertheless, the issue of connecting a measure of
information in evidence theory with a rule of combination
(not necessarily the Dempster rule) is worth investigating.
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