
For instance, in the particular case where � is a par-
tition of S (see example 1); the ambiguity reducing
structure is more informative if and only if the parti-
tion is �ner.

6 Concluding remarks

As emphasized in the introduction, in this paper we
con�ne ourselves to initial imprecise probabilities sit-
uations described by belief functions, assuming more-
over that ex ante the decision maker is merely in-
formed of the set � of possible focal events of a future
compatible belief function. This allows us to derive in
an easy way a simple characterization of such a com-
patible ambiguity reducing process (see proposition
6). Furthermore this leads, in the framework of the
multiple-priors model, both to con�rm the intuition of
the positiveness of ambiguity reduction (see theorem
11), and to obtain a neat and meaningful characteriza-
tion of the partial ordering "more informative than",
in terms of �neness of "information �".

Assuming that ex-ante information consists of a set
� of possible focal elements may appear as a limita-
tion, as can be shown by examining for instance some
practical examples of opinion surveys. It will be the
object of a future paper to relax this assumption, the
same will apply to the belief function hypothesis.

Acknowledgements

We wish to thank Mich�ele Cohen, Jean-Yves Ja�ray
and Jean-Marc Tallon for helpful discussions.

References

[1] H.F. Bohnenblust, L.S. Shapley, S. Sherman. Re-
connaissance in Game Theory, The Rand Corpo-
ration, 1949.

[2] A. Chassagnon, J-C. Vergnaud. A Positive Value
of Information for a non-Bayesian Decision
Maker, to be published in Machina & Munier
eds, 1999.

[3] A. Chateauneuf, J-Y. Ja�ray. Some characteriza-
tions of lower probabilities and other monotone
capacities through the use of M�obius inversion,
Math. Soc. Sc., 17: 263-283, 1989.

[4] A. Chateauneuf. Combination of compatible be-
lief functions and relation of speci�city, in Ad-
vances in the Dempster-Shafer Theory of Evi-
dence, (M. Fedrizzi, J. Kacprzyk and R.R. Yager,
eds), Wiley and Sons, p 97-114, 1994.

[5] A.P. Dempster. Upper and lower probabilities in-
duced by a multiple-valuedmapping,Ann. Math.
Statistics, 338: 325-339, 1967.

[6] D. Dubois, H. Prade. Focusing versus Updat-
ing in Belief Function Theory, in Advances in
the Dempster-Shafer Theory of Evidence (M.
Fedrizzi, J. Kacprzyk and R.R. Yager, eds), Wi-
ley and Sons, 1994.

[7] D. Ellsberg. Risk, Ambiguity and the Savage ax-
ioms, Quartely Journal of Economics, 75: 643-
669, 1961.

[8] I. Gilboa, D. Schmeidler. Maxmin Expected Util-
ity with Non-Unique Prior Journal of Mathemat-
ical Economics, 18: 141-153, 1993.

[9] J-Y. Ja�ray. Belief functions, convex capacities
and decision making inMathematical Psychology:
Current Developments, (J.P. Doignon and J.C.
Falmagne eds.), New-York, Springe, 1991.

[10] J-Y. Ja�ray, P. Wakker. Decision Making with
belief functions : Compatibility and incompat-
ibility with the sure thing principle, Journal of
Risk and Uncertainty, 8: 255-271, 1994.

[11] S. Mukerji. Understanding the non additive prob-
ability decision, Economic Theory, 59: 33-49,
1997.

[12] G. Shafer. A mathematical theory of evidence,
Princeton Uty Press, 1976.

[13] P. Smets. About updating, in Uncertainty in Ar-
ti�cial Intelligence: Proceedings of the Seventh
Conference, (D'Ambrosio B.D., Smets, P., Bonis-
sone, P., eds), 1991.

[14] B. Walliser, D. Zwirn, Les r�egles de r�evision des
croyances Mimeo CERAS-CREA, Paris, 1995.



5 Comparing Ambiguity Reducing
Structure

It is interesting to be able to compare ambiguity re-
ducing structures in terms of informativeness. One
way to do that, is to compare their respective values
of information. Let us adapt the classical de�nition
of [1].

De�nition 11 f �� is more informative than f ���

if for all A; V I(A; f;�) � V I(A; f;��):

Our purpose is to �nd some equivalent comparative
properties of the ambiguity reducing structures. Let
us introduce the two following de�nitions.

De�nition 12 f � � is �ner than f � �� if for all
g 2 BF (�; f) it exists a g� 2 BF (��; f) such that
z(f; g) � z(f; g�)

De�nition 13 � is �(f)� �ner than the set �� if for
all E 2 �(f); for all F 2 �(E); there exists a G 2
��(E) such that F � G:

The following result gives the complete characteriza-
tion of the partial ordering for the ambiguity reducing
structures.

Theorem 14 The three proposition are equivalent:

(i) f �� is more informative than f ���

(ii) f �� is �ner than f ���

(iii) � is �(f)� �ner than the set ��

Proof. (i) ) (iii) Let us show that if (iii) does not
hold, then it is also the case for (i).Then, there exists
E 2 �(f) and F 2 � such that 8G 2 ��; E \ F is
not included in E \G: First,we show that there exists
a g 2 BF (�; f) such that 8g� 2 BF (��; f); z(f; g)
is not included in z(f; g�): There exists a function
' : �(f) �! � such that 8H 2 �(f); H \ '(H) 6=
;; '(H) = F if H \ (E \ F ) 6= ;: De�ne g 2
BF (�; f) by 8G 2�

m g (G) =
P

H 2�(f)='(H) =G

mf (H): (Indeed, one can

check that g is compatible with f).Consider g� 2
BF (��; f). According to lemma 2, there exists
a mapping �� : 2S � 2S ! R+ verifying the
lemma 2 condition (ii): There exists a G 2 ��

such that ��(E;G) > 0 and a s 2 S such that
s 2 (E \ F )n(E \ F \ G):Then de�ne a p 2
z(f; g) such that p (fsg) =

P
H 2�=H �fsg

mg(H): (in-

deed, such a p exists). By de�nition of g, we have
also p (fsg) =

P
H 2�(f)=H �fsg

mf (H):Let us check

that p =2 z(f; g�) : If pwere in z(f; g�); we should
have p (fsg) �

P
(H;L)2�(f)� ��=H \L�fsg

��(H;L) � P
(H;L)2�(f)� ��=H �fsg

��(H;L)

!
� ��(E;G) = P

H 2�(f)=H �fsg

mf (H)

!
� ��(E;G) which entails

a contradiction.

Thus 8g� 2 BF (��; f); there exists a p 2
z(f; g) with p =2 z(f; g�): Let (�; �) 2 R2 such that
� < �: Since z(f; g�) is a closed convex set there ex-
ists (Minkowski lemma) an hyperplan H� in Rn going
through p and withz(f; g�) aboveH�. Let u be a nor-

mal to H�: Consider u0 =

 
���

Inf
p� 2z(f;g�)

u:p�� u:p

!
:u +0

B@
 
�: Inf

p� 2z(f;g�)
u:p�

!
� �:(u:p)

Inf
p� 2z(f;g�)

u:p��u:p

1
CA :e where e is the unit

vector of Rn : Since we consider probability distribu-
tions, we have that u0:p = � < Inf

p� 2z(f;g�)
u0:p� =

�:We admit we can �nd an act a(g�) such that
U (a(g�)) = u0: So u0:p = EpU (a(g�)) = � and
Vf \ g�(a(g�)) = �:Let us consider such a a(g�) for all
g� 2 BF (��; f) and A = fa(g�)= g� 2 BF (��; f)g.
Then V (A; f; �) � V (A; f \ g) � �while 8g� 2
BF (��; f); V (A; f \ g) � Vf \ g� (a(g�)) = �
and thus V (A; f; ��) � �: Since V I(A; f;�) �
V I(A; f;��) = V (A; f;�)� V (A; f;��) � � � � <
0;we have exhibit a decision problem where it is bet-
ter to be informed according to f ���:

(iii) ) (ii) Consider g 2 BF (�; f):There exists a
mapping ' :
� = f(E;F ) 2 �(f) � �=E \ F 6= ;g �! �� such
that 8 (E;F ) 2 � ; E \ F � E \'(E;F ):According
to lemma 2, there exists a mapping � : 2S � 2S !
R+ verifying the lemma 2 condition (ii):De�ne the
mapping �� : 2S � 2S ! R+ by �� (E;G) =P
F 2 �= '(E;F )= G

� (E;F ) and consider g� de�ned by

mg� (G) =
P

E 2�(f)

��(E;G): By de�nition of ' and

lemma 2, we have that g� 2 BF (��; f). One can
check using lemma 1 that z(f; g) � z(f; g�) show-
ing (ii):

(ii) ) (i) Let us note that V I(A; f;�) �
V I(A; f;��) = V (A; f;�) � V (A; f;��): Since 8 g 2
BF (�; f); 9 g� 2 BF (��; f) such that z(f; g) �
z(f; g�); then 8 a 2 A; Min

p2 z(f;g)
EpU (a) � Min

p 2 z(f;g�)

EpU (a), soV (A; f \ g) � V (A; f \ g�) �
V (A; f;��)and �nally V (A; f;�) � V (A; f;��):



We will say that there is a positive value of infor-
mation for the structure f �� if the anticipated value
V (A; f; �) is greater than the value V (A; f) he would
get by ignoring his information possibilities.

De�nition 9 The information value is equal to

V I(A; f;�) = V (A; f; �) � V (A; f)

Since 8E 2 �(f), �(E) 6= f;g; hence BF (�; f) 6=
; and the information value is well de�ned.

The next results con�rm the intuition that the reduc-
tion of ambiguity is positive for the decision maker,
i.e, the information value is always positive3.

Theorem 11 For all A; f and �; V I(A; f;�) � 0:

Proof. 8 g 2 BF (�; f); z(f; g) � z(f) )
8 a 2 A; V (A; f \ g) =Max

a2A
Vf \ g(a) �

Vf (a) . So, V (A; f \ g) � V (A; f):Consequently,
V (A; f; �) = Min

g 2BF (�;f)
V (A; f \ g) � V (A; f):

4 Consistent Ambiguity Reducing
Structure

We noted that proposition 7 was about some logical
consistency between the anticipation and the initial
knowledge. An other way to introduce this idea of
consistency between the anticipation and the initial
knowledge is to consider the following notion of Neu-
trality with respect to initial knowledge.

De�nition 10 f �� satis�es Neutrality with respect
to the initial knowledge z(f) if z(f) = [

g 2BF (�;f)

z(f; g)

Thus, we can complete proposition 7.

Proposition 12 The three propositions are equiva-
lent

(i) For all p 2 z(f); BF (�; p) 6= ;

(ii) [
E 2�(Supp(f))

E = Supp(f)

(iii) f �� satis�es Neutrality with respect to the initial
knowledge z(f):

Proof. Proposition 7 stated the equivalence between
(i) and (ii):

3This positive result does not contradict the well known
result that standard "focusing" information might have a
negative-value in non-Bayesian models.

(i) ) (iii) Since 8 p 2 z(f); 9 g 2 BF (�; f) such
that p 2 z(f; g); z(f) = [

g 2BF (�;f)
z(f; g)

(iii) ) (i) 8 p 2 z(f); 9 g 2 BF (�; f) such that p
2 z(f; g):

Neutrality with respect to the initial knowledge cap-
tures the idea that the anticipation in an ambiguity
reducing structure should not allow the decision maker
to improve ex ante his knowledge.

Let us take now a decision theoretic point of view.
A positive value of information captures the decision
theorists intuition that information is always valuable
because it permits to adapt more accurately one's
choice. Yet if the choice set is reduced to a unique act,
there is no possibility of adjusting more accurately
one's choice and there should be a null value of infor-
mation whatever is the information structure. If on
the contrary, we �nd a positive value of information,
it is the kind of "pure" value of information that indi-
cates that the initial knowledge does not capture all
the information already available in the information
structure. Which is the condition that ensures that
we will not �nd a "pure" value of information? The
following theorem shows that the consistency condi-
tions examined above are the right conditions.

Theorem 13 The two propositions are equivalent

(i) f �� satis�es Neutrality with respect to the initial
knowledge z(f)

(ii) For any singleton A; V I(A; f;�) = 0.

Proof. (i) ) (ii) Since A =

fag; V (A; f; �) = Min
z(f;g)2 f��

�
Min

p2z(f;g)
EpU (a)

�
=

Min
p2 [

z(f;g)2 f��
z(f;g)

EpU (a) = Min
p2z(f)

EpU (a) =

V (A; f)

(ii) ) (i) Let us show that if (i) does not stand,
then it is also the case for (ii).By proposition 12, we
know that it exists a

s 2 Supp(f)�

�
[

E 2�(Supp(f))
E

�
:ConsiderA =

fagwith a such that U (a(s)) = � and 8s� 6=
s U (a(s�)) = � ; � < �: (We assume the non-
degeneracy of X such that it is always pos-
sible to construct such an act a:) Then, since
8 p 2 [

z(f;g)2 f��
z(f; g); p(s) = 0 it implies

that EpU (a) = V (A; f; �) = � :On the other hand,
since 9 p 2 z(f) such that p(s) > 0; V (A; f) <
� and thusV I(A; f;�) > 0:



pH(sH ) = mf (E) � Max(0;mf(E) �
mf (F ) )+

P
P 2�(f)nfE;Fg=  (P ) = s�

mf (P );

pH(sL ) = mf (F ) + Max(0;mf(E) �
mf (F ) )+

P
P 2�(f)nfE;Fg=  (P ) = s�

mf (P );

pG(s�) = mf (E) +
P

P 2�(f)nfE;Fg=  (P ) = s�

mf (P );

pG(sH ) =
P

P 2�(f)nfE;Fg=  (P ) = s�

mf (P );

pG(sL ) = mf (F )+
P

P 2�(f)nfE;Fg= (P ) = s�

mf (P );

and the belief functions gi, for
i = H; G by mgi(M ) =

P
P 2�(f)=Ni(P ) =M

mf (P ):

We can check that pG 2 z(f; gH ) \ z(f; gG) ; pH 2
z(f; gH ) and pH =2 z(f; gG) which means that f ��
is not a partition.

This partitional case is similar to the usual informa-
tion structures conceived as partitions of S2. Example
2.1 was a case were condition (iii) is satis�ed. This
result shows that in general, f � � is not a partition
of z(f) and that the ambiguity reduction process can
be itself quite fuzzy.

3 The Information Value of an
Ambiguity Reducing Structure

We consider the Max min EU with multi-priors model
of [8] in order to analyse the value of information. Let
us introduce this model of preference formally. The
decision maker is choosing between acts awhich are
mappings from S into a set of outcomes X. We sup-
pose that the decision maker has a utility function
U de�ned on X and that his preference on the set of
acts relies on a family z(f) of probability distribu-
tions on S, with f his initial belief function, through
the functional:

Vf (a) = Min
p2z(f)

EpU (a)

Without access to supplementary statistical data, the
timing of decision and resolution of uncertainty is
shown on �gure 1.

Let denote a� the optimal choice of the decision-maker
when he has to choose in an opportunity set A and
note V (A; f) =Max

a2A
Vf (a) = Vf (a�) the optimal

value he can get.

However, after he receives a g 2 BF (�; f), the deci-
sion maker chooses accordingly to his \ revised" pref-

2We conjecture that (iii) is also a su�cient condition
to have a partition.
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Figure 2: With information.

erence Vf \ g(:). The timing of decision and resolution
of uncertainty is shown on �gure 2.

Let denote a � (g) his optimal choice after he re-
ceives the belief function g and V (A; f \ g) =Max

a2A

Vf \ g(a) = Vf \ g(a � (g)) the optimal value he get
conditionaly on g.How does the decision maker value
ex ante the whole process of choosing in A after get-
ting new statistical data? For that, we have to de-
termine how the decision-maker evaluates ex ante
the fact of getting V (A; f \ g) conditionaly on g.
Since the decision maker's anticipations about the
g 2 BF (�; f) he may receive are totally uncertain,
it seems natural to consider the following anticipated
value

V (A; f; �) = Min
g 2BF (�;f)

V (A; f \ g)



0; E 6= F and s� 2 E \ F; or [
E 2�(Supp(f))

E �

Supp(f) and in this case, according to 7, there ex-
ists a p 2 z(f) such that BF (�(Supp(f)); p) =
;: Let us consider the �rst case. Then, there
exists two functions 'E and'F : Supp(f) �!
�(Supp(f)) such that 8 s 2 Supp(f); s 2 'E(s)
and s 2 'F (s) with 'E (s�) = E , 'F (s�) =
F and 'E(s) = 'F (s) otherwise: De�ne g'i 2
BF (�(Supp(f))) by mg'i

(H) =
P

s2Supp(f) ='i(s)=H

p(s) for i = E;F: Then one can check that g'E 6=
g'F andfg'E ; g'F g � BF (�(Supp(f); p):

(ii) ) (i) Let us consider p 2 z(f): Consider gp de-
�ned by mgp (E) =

P
s2E

p(s) if E 2 �(Supp(f)); =

0 otherwise. (ii) implies that g' is a be-
lief function inBF (�(Supp(f)); p): Take a g 2
BF (�(Supp(f); p): Suppose that g 6= g' so that
there exists a E 2 �(Supp(f)) such that mg(E) 6=
mg' (E): Suppose for instance mg(E) < mg' (E):By
de�nition of BF (�(Supp(f)))

P
F2�(Supp(f))

mg(F ) =P
F 2�(Supp(f))

mg' (F ) = 1:Then with (ii) and

by de�nition of g', this implies that g(E) =
mg(E) < g'(E) = mg' (E) = p(E) and
g(SnE) =

P
F 2�(Supp(f))nfEg

mg(F ) = 1 � mg(E) >

g'(SnE) = 1� mg' (E) = p(SnE) = 1�p(E) which
contradicts the fact that p 2 core(g): If mg(E) <
mg' (E) the contradiction comes directly fromg(E) =
mg(E) > g'(E) = mg' (E) = p(E):

Condition (ii) is quite strong and corresponds to the
particular case we have examined in examples 1 and
2.2. The next proposition shows that it exists some
weaker condition that still give some interesting prop-
erty for the Ambiguity Reducing Structures.

Proposition 10 The �rst two propositions are equiv-
alent and they imply the third one.

(i) For all p in z(f); BF (�; p) 6= ; and for all
p; p0 in z(f),either BF (�; p) \BF (�; p0) = ; or
BF (�; p) = BF (�; p0).

(ii) f � � is a partition of z(f)

(iii) For any E 2 �(f); �(E) is a partition of E and
for all H; G in �, for all E; F 2 �(f) H\E = G\ E
and E \ F 6= ; implies H \ F = G \ F:

Proof. (i) ) (ii) Since 8 p; BF (�; p) 6=
;; then [

z(f;g) 2 f��
z(f; g) = z(f). Consider

two distinct g and g0 in BF (�; f) such that z(f; g) \
z(f; g0) 6= ; (however, if two such g and g0 do not ex-
ist, then f �� is necessarily a partition of z(f)):Then
9 p 2 z(f; g) \ z(f; g0): 8 p0 2 z(f; g); g 2

BF (�; p) \ BF (�; p0) and (i) implies that g0 2
BF (�; p0) and p0 2 z(f; g0): Thus z(f; g) =
z(f; g0) which means that f �� is a partition.

(ii) ) (i) Since [
z(f;g)2 f��

z(f; g) = z(f); 8p 2

z(f) 9g such that p 2 z(f; g) showing that
BF (�; p) 6= ;: If g 2 BF (�; p) \BF (�; p0) and g0 2
BF (�; p); then p 2 z(f; g) \ z(f; g0) so z(f; g) =
z(f; g0) and p0 2 z(f; g) ) p0 2 z(f; g0) which
means that g0 2 BF (�; p0):

(ii) ) (iii) Let us show that if (iii) does not hold,
then it is also the case for (ii): If (iii) does not
hold then we are in one of the following situations:

�(E) is not a partition of E for all E and

a) either 9E 2 �(F ) such that [
H 2�(E)

H �

E which implies [
H 2�(Supp(f))

H � Supp(f) and by

proposition 7we know then that [
z(f;g) 2 f��

z(f; g) �

z(f) which contradicts (ii).

b) or there exists two distinct F andG in �(E) such
that F \ G 6= ;: SupposeF nG 6= ;: (If F nG =
;; then necessarily G nF 6= ; and we can adapt
the proof). Then there exists functions 'F , 'F \G :
�(f) �! Supp(f) and functions LF , LG : �(f) �!
� such that 8H 2 �(f); 'F (H) 2 H \ LF (H) ,
'F \G(H) 2 H \ LG(H) , 8H 6= E; LF (H) =
LG(H); 'F (H) = 'F \G(H) and 'F (E) 2 F n
G, 'F \G(E) 2 F \ G: De�ne the probability
distributions pi, for i = F; F \ G by pi(s) =P
H 2�(f)= 'i(H) = s

mf (H) and the belief functions

gi, for i = F; G by mgi (L) =
P

H 2�(f)=Li(H) =L

mf (H) :We can check that pF \G 2 z(f; gF ) \
z(f; gG) ; pF 2 z(f; gF ) and pF =2 z(f; gG) which
means that f �� is not a partition.

Or �(E) is a partition of E for all E but

c) 9H; G in�; E; F in�(f) such that H \ E = G \
E and H \ F 6= G \ F: Then H \ (E \ F ) =
G \ (E \ F ) = ; since the partition's condi-
tion. SupposeH \ F 6= ;:Then, there exists a L 2
� such that L \ (E \ F ) 6= ;: Then there exists
a function  : �(f)n fE;Fg �! Supp(f); func-
tions NH , NG : �(f) �! � such that 8M 2
�(f)n fE;Fg ; NH(M ) = NG(M ) and NH (E) =
H; NG(E) = G; NH (F ) = NG(F ) = L; and states
s� 2 H \E; sH 2 H \ F ; sL 2 L \ (E \F ):De�ne
the probability distributions pi, for i = H; G by
8 s 2 Sn fs�; sH ; sLg ; pi(s) =

P
P 2�(f)nfE;Fg=  (P ) = s

mf (P ); pH (s�) =
P

P 2�(f)nfE;Fg=  (P ) = s�

mf (P );



;: De�ne g' 2 BF (�) by mg' (F ) =
P

E 2�(f) ='(E)=F

mf (E): One can check that g' 2 BF (�; f):

Since in this paper we assume that BF (�; f) is non
empty, the above condition (ii) holds throughout the
paper .

The following proposition shows an important consis-
tency condition about the decision-maker's anticipa-
tions.

Proposition 7 The two propositions are equivalent

(i) For all p 2 z(f); BF (�; p) 6= ;

(ii) [
E 2�(Supp(f))

E = Supp(f):

Proof. (i) ) (ii) Let us show that if (ii) does not
stand, then it is also the case for (i): Suppose 9 s 2
Supp(f) such that s =2 [

E 2�(Supp(f))
E: Then 9 p 2

z(f) such that p(s) > 0: BF (�; p) = ; since 8 g 2
BF (�); s =2 Supp(g):

(ii) ) (i) Let us take a p 2 z(f):Consider
a function ' : Supp(f) �! � such that
8 s 2 Supp(f); s 2 '(s):De�ne g' 2 BF (�) by
mg' (E) =

P
s2Supp(f) = '(s)=E

p(s):We obtain g' 2

BF (�; p):

We can expect(ii) to be an important consistency con-
dition. For instance, consider on the contrary that
(ii) does not hold. Then there exists a p such that
BF (�; p) = ; and, according to proposition 5, this
means that the decision maker already knows that
whatever g he will receive, he will not consider p as
possible any more. Logically, he could eliminate ex
ante p in his initial knowledge core(f).

One may wonder what role � plays. The following
results show that we can restrict our attention to
�(Supp(f)):

Proposition 8 For all belief functions f and sets
�; f �� = f ��(Supp(f))

Proof. First let us prove that f �
�(Supp(f)) � f � �: For that purpose, let us con-
sider g belonging toBF (�(Supp(f)); f);and de�ne
a new belief function g' 2 BF (�; f) such that
z(f; g') = z(f; g):Thus, let ' be a mapping E 2
�(Supp(f)) �! '(E) 2 � such that ' (E) \
Supp(f) = E, the existence of such a mapping is
trivial from the de�nition of �(Supp(f):Furthermore,
it is straightforward that ' is injective. Hence let g'
be the set-function on (S; 2S) whose M�obius inverse
is de�ned by mg' (F ) = mg('�1(F )); 8F 2 2S :
That g' is a belief function with support contained

in �, can be readily checked. It remains to prove that
z(f; g') = z(f; g):

First prove z(f; g') � z(f; g): Let p 2 core(f) \
core(g'): That p will also belong to core(g) will result
through (iii) of the lemma 1 from the fact that 8 s 2
Supp(p); 8F 2 �; one obtains F � fsg is equivalent
to '�1(F ) � fsg :

The converse inclusion z(f; g') � z(f; g), will be
similarly obtained through the lemma 1, taking into
account the fact that if p 2 z(f; g) then 8 s 2
Supp(p); 8E 2 �(Supp(f)), one obtains E � fsg is
equivalent to '(E) � fsg ; hence mg' ('(E)) =
mg(E) will allow to conclude.

Conversely let us prove that f � � � f �
�(Supp(f)):For that purpose, let us consider g be-
longing toBF (�; f); and de�ne a new belief func-
tion g0 2 BF (�(Supp(f)); f) such that z(f; g0) =
z(f; g):Thus let g0 be the set-function on (S; 2S)
whose M�obius inverse mg0 is de�ned bymg0 (E) =P
F 2�; F \Supp(f) =E

mg(F ); 8E 2 2S :First it is easy

to show that g 2 BF (�; f) entails that 8 p 2
z(f; g) and 8F 2 �(g); F \ Supp(p) 6= ; hence
F \ Supp(f) 6= ;, and therefore : F \ Supp(f) 6=
;; 8F 2 �(g): This will entail that mg0 (;) =
0; and that g0 is actually a belief function whose sup-
port is contained in �(Supp(f)): It remains to prove
that z(f; g) = z(f; g0):

We just con�ne to sketch the proof of z(f; g0) �
z(f; g); the converse being similar.

Let p 2 z(f; g0): The lemma 1 states that there ex-
ists �0 such that 8 s 2 S : p(fsg) =

P
G0 2 2S; G0 �fsg

�0(s;G0):mg0 (G0): It follows that 8 s 2 S : p(fsg) =P
G2 2S; G�fsg

�0(s;G \ Supp(f)):mg (G): Then for

a given G 2 2S; de�ning �(s;G) = �0(s;G \
S u pp(f)) if s belongs to G \ Supp(f); �(s;G) = 0 if
s 2 G; s =2 Supp(f); will entail through the lemma 1
that p � g;which achieves the proof.

The decision maker is sure that there is a zero prob-
ability that the real state of the world lies outside of
Supp(f), so he does not bother about these states.

Proposition 9 The two propositions are equivalent

(i) For all p 2 z(f); BF (�(Supp(f)); p) is a single-
ton

(ii) �(Supp(f)) is a partition of Supp(f):

Proof. (i) ) (ii) Let us show that if (ii) does
not hold, then it is also the case for (i). If (ii) does
not hold, then either there exists a s� 2 Supp(f); a
p 2 z(f); E and F in�(Supp(f)) such that p(s�) >



This de�nition also stands for probability distribu-
tions. In that case, we have BF (�; p) = fg 2
BF (�)=p 2 core(g)g:

As pointed out in the introduction, the following
lemma, a central result of DEMPSTER [5] (see also
a generalization in [3] to general capacities), will be
of great help in several proofs below.

Lemma 1 Let f be a belief function on (S; 2S) with
M�obius inverse mf and �(f) as set of focal elements,
and let p be a probability measure on (S; 2S). Then,
the following propositions are equivalent:

(i) p � f

(ii) There exists a mapping � : S � 2S ! <e+ such
that

a) �(s; A) > 0 ) s 2 A

b)
P
s2A

�(s; A) = 1; 8A 2 2 S

c) p(fsg) =
P

A2 2S;A�fsg

�(s; A):mf (A); 8s 2 S

(iii)The same proposition as (ii) with �(f) instead of
2S :

It is also the case for the following lemma due to [4].

Lemma 2 Let f and g be two belief functions, then
the following two assertions are equivalent:

(i) The belief functions f and g are compatible

(ii) There exists a mapping � : 2S � 2S ! R+ such
that :

a) �(E;F ) > 0 ) E � F 2 �(f) � �(g) and
E \ F = ; ) �(E;F ) = 0

b) mf (E) =
P

F 2�(g)

�(E;F ) and mg(F ) =
P

E 2�(f)

�(E;F )

Let us add that, due to space constraints, we have
only tried to emphasize the main points of the proofs
of the results below, without always developping all
details.

Proposition 3 For all belief functions f and sets
�; BF (�; f) = [

p2core(f)
BF (�; p):

Proof. Obvious (remind that g 2 BF (�; f) i�
9 p 2 core(f) \ core(g) and g 2 BF (�))

In terms of anticipations, this means that the belief
functions g the decision maker believe possible given
f and � are the belief functions that he believes possi-
ble to receive given � and a possible underlying prob-
ability distribution p.

Proposition 4 For all belief functions f , sets � and
g 2 BF (�; f), core(f)\ core(g) = fp 2 core(f) = g 2
BF (�; p)g.

Proof. Obvious (this result is a mere restatement
of de�nitions 1 and 5).

Let us study now the decision-maker's anticipations
about how he will revise his knowledge.

De�nition 6 We note respectively z(f) and z(f; g)
the family of probability distributions in core(f) and
core(f) \ core(g).

Necessarily z(f; g) � z(f) which can be interpreted
as a reduction of ambiguity. 1

Given f and �; a decision maker can anticipate how
his beliefs may evolve after he will get new data.

De�nition 7 We call the set f � � = fz(f; g)=g 2
BF (�; f)g an Ambiguity Reducing Structure.

By de�nition, any z(f; g) in f �� is not ;.

Proposition 5 Let p be given in z(f); then there ex-
ists at least a z(f; g) 2 f �� such that p 2 z(f; g) if
and only if BF (�; p) 6= ;:

Proof. Obvious since for any p 2 z(f); p 2
z(f; g) , g 2 BF (�; p)

If there is no such z(f; g) 2 f � �; this means that
the decision maker anticipates that he will no longer
consider p as possible whatever the data he receives.

De�nition 8 For any � � 2S and E 2 2S , we note
�(E) = fF 2 2S=F = H \E withH 2 �g

The next proposition gives the condition which en-
sures that the decision-maker can make some antici-
pations.

Proposition 6 The two propositions are equivalent

(i) BF (�; f) 6= ;

(ii) 8E 2 �(f); �(E) 6= f;g :

Proof. (i) ) (ii) We show the implication by
proving that if (ii) does not stand, then it is also
the case for (i). Thus take a E 2 �(f) such that
�(E) = f;g: It implies that 8 g 2 BF (�); 8 p 2
core(g); p(E) = 0 while 8 p 2 z(f); p(E) �
mf (E) > 0: So BF (�; f) = ;

(ii) ) (i) If (ii), then there exists a function ' :
�(f) �! � such that 8E 2 �(f); E \ '(E) 6=

1
z(f; g) is what corresponds to the "revising message"

considered in [2].



Then institute 1 faces a kind of situation investigated
in this paper, since it only knows the possible focal el-
ements (here B or B) of the future belief function g,
and clearly the assumption of representative samples
guarantees the compatibility of f and g.

In example 2 below we consider a more general situ-
ation in the sense that the future possible focal ele-
ments will no longer form a partition of the set S of
states of nature.

Example 2 (Adapted from [9]) Assume that two
tests T1 and T2 allow to conclude about the pres-
ence or absence of deseases D1 or/and D2 through

the following DEMPSTER [5] scheme : X
�
! 2S ,

where X =
�
T +
1 T +

2 ; T +
1 T �

2 ; T �
1 T +

2 ; T �
1 T �

2

	
and

S =
�
D1D2 ; D1D2 ; D1 D2 ; D1 D2

	
are respec-

tively the message space and the set of states of
nature, and where the multivalued mapping � is
de�ned by �(T +

1 T +
2 ) = D1D2 ; �(T

+
1 T �

2 ) =
D1; �(T

�
1 T +

2 ) = D2; �(T
�
1 T �

2 ) = D1 D2 :Note
that for instance �(T �

1 T �
2 ) = D1 D2 expresses that

a negative test for both T1 and T2 guarantees the ab-
sence of both disease D1 and D2, and so on.

Then in view of the results of the tests for a high risk
group representative sample, a decision-maker can de-
duce some knowledge about the joint distribution of
diseases D1 and D2 via the induced belief function f:

Assume now that the decision-maker intends to per-
form in the near future only partial tests for a simi-
lar representative sample. Clearly, the decision maker
faces a situation that falls into the category studied in
this paper, since he only knows the possible focal ele-
ments of the future compatible belief function g. Fur-
thermore, as shown by the two particular cases below,
in general the future possible focal elements will not
consist of a partition of S:

Example 2.1 Suppose test T1 will be �rst per-
formed, and then T2 only in case of a positive
test T +

1 . It is easy to check that one obtains
the following set of possible focal elements for g :�
D1D2 ; D1; D2 [ D1 D2

	
:

Example 2.2 Suppose that furthermore in case of
T +
1 T �

2 , the patient will be followed in order to con-
clude to the breakout (D2 ) or not (D2 ) of disease
D2 : Hence the set of possible future focal elements:�
D1D2 ; D1D2 ; D2 [ D1 D2

	
which again will not

form a partition of S, but nevertheless a partition of
Supp(f); the support of f , a more tractable situation
than the previous one.

Let us mention that dealing here only with belief func-
tions (instead of, say, with convex capacities) presents
several advantages. First it �ts with numerous prac-

tical situations of imprecise but exact data. Second
it considerably facilitates the derivation of clear-cut
results essentially through the non-negativity of the
M�obius inverse and the resulting simple description of
the core of such capacities, a well-known result since
DEMPSTER [5] seminal paper.

The paper is organized as follows. In section 2, we set
the framework of the process we consider. In section
3 we de�ne the value of information. In section 4 we
study the consistency requirement for these "Ambig-
ity Reducing Structures". In section 5, we compare
structures in terms of informativeness.

2 De�nition of the Ambiguity

Reducing Structures

We consider S a �nite set of states of the world and
2S the algebra of events of S. The decision maker has
an initial statistical knowledge core(f) with f a belief
function de�ned on 2S and mf its M�obius transform.

De�nition 1 Two belief functions f and g on 2Sare
said to be compatible if core(f) \ core(g) 6= ;:

Since the decision maker is concerned with the real un-
derlying probability distribution and since we suppose
that the statistical data he receives is only imprecise
but never wrong (i.e the real underlying statistical sit-
uation always belong to the family of probability dis-
tribution that sums up the knowledge of the decision
maker), we only restrict our attention to belief func-
tions which are compatible. (For an extensive study
of the combination of two compatible belief functions
see [4])

De�nition 2 We call Supp(f) the smallest (for set
inclusion) E � S such that f(E) = 1.

For a belief function, there is no problem of existence
and unicity of such an event.

De�nition 3 We note �(f) = fE � S =mf (E) > 0g
the set of focal events for the belief function f:

Obviously we have that Supp(f) = [E
E 2�(f)

.

Let us consider � � 2S .

De�nition 4 We note BF (�) the set of belief func-
tions g such that �(g) � �:

From now on we assume that the decision-maker
knows that the focal events of the belief function g
he will receive will all belong to �:

De�nition 5 We note BF (�; f) the set of belief
functions in BF (�) which are compatible with f .



1st International Symposium on Imprecise Probabilities and Their Applications, Ghent, Belgium, 29 June - 2 July 1999
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Abstract

We provide some objective foundations for a belief
revision process in a situation where i)the decision
maker's initial probabilistic knowledge is imprecise
and characterized by the core of a belief function;
ii)expected new data are themselves consistent with a
belief function with known focal sets and iii) is based
on belief function combination. We study the proper-
ties of the information value for such revising in the
GILBOA - SCHMEIDLER multi-prior model.

Keywords: revising, information value, belief func-
tion

1 Introduction

In this paper, we consider a decision maker who knows
that he will improve his imprecise statistical knowl-
edge by getting some new data. This improvement
will enable him to reduce the ambiguity he faces. In
other words if his initial knowledge consists of a fam-
ily of probability distributions, then the new data will
drive him to revise his belief and replace this family
by a smaller one. This work is closely linked to [2]
where a notion of information structure based on the
idea of ambiguity being reduced is de�ned, and where
the information value of such a process is obtained
by considering the GILBOA-SCHMEIDLER [8] Max
Min Expected Utility Model. However, while in [2]
the consistency of the subjective anticipations of the
decision-maker about the future reduction in ambi-
guity was studied, no objective foundations for this
process was proposed. The purpose of the present
paper is to o�er such an objective explanation.

The idea is the following. Initially, the decision-maker
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is endowed with a belief function f and considers as
possible the family of probability distributions which
lie in the core of f . The new statistical data he
is going to receive is a belief function g compati-
ble with f . Given this new belief function g, the
decision-maker will combine his initial family core(f)
with the new family core(g) and restrict his atten-
tion to core(f) \ core(g) since the statistical reality,
i.e, the true probability distribution, necessarily be-
longs to the two families. The decision-maker does
not know in advance which belief function he will re-
ceive. Indeed, were we to assume the contrary, he
could already revise his knowledge. Yet, throughout
this paper, we make the central assumption that the
decision-maker knows the possible focal events of the
future belief function. Thus he anticipates that he
can receive any belief function g with focal events in
a given set, which is compatible with f i.e such that
core(f) \ core(g) 6= ;: The two following examples
aim at illustrating our purpose.

Example 1 (Adapted from [13]) Assume that a poll
institute 1 organizes a study on how a representative
sample will vote for a next election in two months.
Let S = fa; b; c; d; eg be the set of candidates. Vot-
ers opinions, today, are not �rmly established, so vot-
ers are authorized to point only a subset A of S that
contains the name of the candidate they will vote for.
(In order to avoid unecessary technical complications,
we assume that A must be non empty). Therefore
institute 1 will get a belief function f , with the help
of the induced objective proportions m(A) for any A
belonging to 2S:

Suppose now that institute 1 learns that a few days
before the actual vote, the results of a new survey per-
formed on a similar representative sample by a poll
institute 2 will be published, where the voters will be
asked whether they will vote for a candidate in a given
non empty coalition B 2 2S or in the opposite non
empty coalition B: (For the same reasons as above,
we assume that the choice of B or B is compulsory).


