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Abstract

The paper studies the Generalized Neyman-Pearson
problem where both hypotheses are described by in-
terval probability. First the Huber-Strassen theorem
and the literature based on it is reviewed. Then some
recent results are presented indicating that the restric-
tive assumption of C-probability (two monotonicity)
underlying all that work can be overcome in favor of
considering general interval probability in the sense of
Weichselberger ([29]).
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1 Introduction

Interval probability is a substantial extension of the
usual concept of probability. By assigning inter-
vals [L(A); U(A)] instead of single real numbers p(A)
an appropriate modeling of more general aspects of
uncertainty is provided. Though the idea to use
interval-valued probabilities has a long history,1 the
main steps towards a comprehensive theory have been
achieved only recently.

In the last years the interest has mainly concen-
trated on generalized Bayesian inference. Neverthe-
less, interval probability also proves to be quite im-
portant for the non-Bayesian (`objectivistic/ frequen-
tist') point of view. The present paper reviews and
extends results on the generalization of the Neyman-
Pearson alternative testing problem to the situation
where both hypotheses are described by interval prob-
ability. Section 2 states some basic de�nitions from
Weichselberger's interpretation-independent concept
of general interval probability (F-probability), which

1For reviews and references on the development of in-
terval probability see especially [24, Chapter 1 and 5], [29,
Chapter 1] and [7].

is underlying this work. Also the special case of
C-probability is considered, which contains two mono-
tone capacities and pseudo-capacities and therefore
the neighborhood models commonly used in robust
statistics. It turns out that nevertheless the condi-
tion of being C-probability would be too restrictive
to serve as basis for a general theory. Section 3 looks
at the generalized testing problem and the concept
of (globally) least favorable least pairs to construct
(level-�-)maximin-tests. The Huber-Strassen theo-
rem, which ensures the existence of globally least fa-
vorable pairs for typical C-probabilities, as well as the
literature following it, is reviewed in section 4. | The
next two sections show that it is not necessary to re-
strict the consideration on the narrow class of C-prob-
abilities as has been done up to now. In section 5 the
so-called `necessity theorem for C-probability' is toned
down by characterizing some situations of F-prob-
ability not being C-probability, where nevertheless
globally least favorable pairs exist. Furthermore a
`decomposition-theorem' is developed allowing to con-
sider more complex neighborhood models. Section 6
brie
y sketches the concept of locally least favorable
pairs. Some directions of further research are indi-
cated in the concluding remarks in section 7.

2 Some basic aspects of interval
probability

2.1 F-probability, structure

This paper is based on the interpretation-independent
theory of interval probability developed by Weichsel-
berger ([29]).2 His concept is founded on the follow-
ing generalization of Kolmogorov's axioms ([26],[29,
Chapter 2]).

De�nition 1 (The Axioms of (totally-determi-
nated) interval probability) Let (
;A) be a
measurable space.

2For selected aspects cf. also [30], [26], [27], [28].



� A function p(�) on A ful�lling the axioms of Kol-
mogorov is called K-probability or classical prob-
ability. The set of all classical probabilities on
(
;A) will be denoted by K (
;A).

� A function3 P (�) on A is called R-probability with
structure M, if

1. P (�) is of the form

P (�) : A ! Z0 := f[L;U ] j0 � L � U � 1g

A 7! P (A) = [L(A); U(A)] :

2. The set

M := f p(�) 2 K(
;A) j
L(A) � p(A) � U(A); 8A 2 Ag

(1)

is not empty.

� R-probability with structureM is called F-prob-
ability, if

inf
p(�)2M

p(A) = L(A)

sup
p(�)2M

p(A) = U(A)

9=
; 8A 2 A : (2)

For every F-probability L(�) and U(�) are conjugated,
i.e. L(A) = 1 � U(AC); 8A 2 A. Therefore ev-
ery F-probability is uniquely determined either by
L(�) or either by U(�) alone. Here L(�) is used,
and F = (
;A; L(�)) is called an F-probability �eld.
Weichselberger's theory relies on countable additive
classical probability. So F-probability is equivalent to
the concept of lower/upper probability in the sense of
[13], but the latter term is avoided here because it is
also used in the literature in several other meanings.
F-probability is also strongly related to coherence in
the setting of Walley ([24]) and to the concept of en-
velopes in the frequentist theory developed by Fine
and students (e.g. [25], [17]).

The interrelation between interval probabilities and
non-empty sets of classical probabilities expressed by
the concept of the structure (see (1)) proves to be
quite important for the whole theory. It indicates how
to extend concepts of classical probability to interval
probability. For instance, generalizing expectation is
straightforward:

De�nition 2 (Expectation with respect to an
F-probability �eld) For every F-probability �eld
F = (
;A; L(�)) with structureM a random variable

3Like in this de�nition, throughout the paper capital-
letter P is used for interval-valued assignments, while
small letters (p; q; : : :) stand for classical probability.

X on (
;A) is called M-integrable, if X is p-inte-
grable for each element p(�) of M. Then

IEMX := [LIEMX;UIEMX ]

:=
�

inf
p(�)2M

IEpX ; sup
p(�)2M

IEpX
�

� [�1;1]

(3)

is called (interval-valued) expectation of X (with re-
spect to F).

If one gives up the requirement underlying Weich-
selberger's axioms that every (generalized) probabil-
ity assignment should be completely described by the
(interval-valued) probability of the events, one can go
a step further and consider interval-valued expecta-
tion as the basic concept (see especially the theory of
Walley ([24])4). Proceeding along these lines sets �M
arising from an analogy to (1) may be of a more gen-
eral form than structures can be (see [24, section 2.7.3,
p. 82�.] for an example), leading by some scholars to
the conclusion that F-probability might not always be
general enough. | But every such set �M of classical
probabilities can be incorporated into the framework
considered here by using �M as a prestructure (see re-
mark 1 below) and transferring it to the structure of
the corresponding F-probability. This, however, may
lead to some enlargement of �M. If one is worried by
this, one will try to use such sets gained from starting
with interval-valued expectation directly, i.e. with-
out enlarging them to structures. Some aspects con-
cerning the question how to do so in the generalized
Neyman-Pearson problem considered here, are brie
y
sketched in Section 7.

2.2 Prestructures

As just exempli�ed, by far not every set of classical
probabilities is a structure of an F-probability under-
lying, but every non-empty set of classical probabil-
ities can be used to construct an unique, narrowest
F-probability �eld corresponding to it.

Remark 1 (Prestructure)([29, Chapters 2.1 and
2.6]) Let V be a non-empty set of classical prob-
abilities on a measurable space (
;A). Then PV(�) :=
[LV(�); UV(�)] with

LV(A) := inf
p(�)2V

p(A) ^ UV(A) := sup
p(�)2V

p(A) (4)

is F-probability, and V is called prestructure of FV =
(
;A; LV(�)).

For the structure MV of FV the relation MV � V
holds. Furthermore every F-probability �eld F =

4The di�erence between countable and �nite additivity
should be neglected for a moment.



(
;A; L(�)) with structureM also ful�llingM� V is
weaker than FV = (
;A; LV(�)), i.e.: L(A) � LV(A),
for all A 2 A:

Mainly two applications of this concept will be used
in what follows:5

De�nition 3 (Independent product of F-prob-
ability �elds)6 Let a �nite number of F-prob-
ability �elds Fl = (
l;Al; Ll(�)) with structures Ml,
l = 1; : : : ; n; be given. Then the F-probability
�eld 
n

l=1Fl := (�n
l=1
l;


n
l=1Al; L(�)), which has

�n
l=1Ml as its prestructure, is called the independent

product of the F-probability �elds Fl; l = 1; : : : n.

De�nition 4 (Parametricly constructed F-
probability �elds) Consider a (strictly) parametric
set Q = fp�(�) j � 2 �g; � � IRm; of K-probabilities
on a measurable space (
;A). An F-probability
�eld F(�) = (
;A; L(�)) with structure M is called
parametricly constructed with respect to Q, if there
exists a

� = [�L1 ; �
U
1 ]� [�L2 ; �

U
2 ]� : : :� [�Lm; �

U
m] � �

in such a way, that

Q(�) := fp�(�) j � 2 �g

is a prestructure ofM. Then � is called parameter of
F(�) (with respect to Q).

2.3 C-probability

In this subsection a special case of F-probability is
considered, called C-probability with [29, Chapter 5].
It provides a superstructure upon neighborhood mod-
els commonly used in robust statistics (see below) and
additionally contains the so called Dempster-Shafer
belief-functions (e.g. [32]).

De�nition 5 (C-probability) Let (
;A) be a
measurable space. F-probability P (�) = [L(�); U(�)]
is called C-probability, if L(�) is two-monotone7, i.e.,

5One interpretation of such concepts de�ned via pre-
structures is to take them as a robusti�cation of the classi-
cal concepts (e.g. of independence or parametric distribu-
tions). In general, the structures of the resulting F-prob-
ability �elds are richer than the sets used for construc-
tion. The structure of the independent product also con-
tains \slightly dependent" classical probabilities \lying be-
tween" the independent ones. In the second case all the
mixtures of the distributions corresponding to a parame-
ter inside � belong to the structure as well.

6Compare [25, p. 745], [29, Chapter 7] and the `sensi-
tivity analysis de�nition' in [24, Chapter 9.1]

7A lot of di�erent names are common for this prop-
erty, especially it is also called `(strong) superadditivity',
`supermodularity' or `convexity'.

if

L(A[B)+L(A\B) � L(A)+L(B); 8A;B 2 A : (5)

Then the F-probability �eld C = (
;A; L(�)) is called
a C-probability �eld.

Two related classes of C-probabilities have been ex-
tensively studied in the literature.

Remark 2 (Typical examples of C-probability
�elds) Assume (
;A) to be a Polish measurable
space.8

� Pseudo-capacities:9 Let f(�) : [0; 1] ! [0; 1] be a
convex function with f(0) = 0 and let p(�) be a
K-probability on (
;A) (called central distribu-
tion in this context). Then

P (�) :=
�
(f 
 p)(�); 1� (f 
 p)(�C)

�

with (f 
 p)(
) = 1 and

(f 
 p)(A) := f (�p(A))

, for all A 2 A n f
g ; is C-probability. Its struc-
ture will be denoted by M(f 
 p).

� Two-monotone (Choquet)-capacities: Every set-
function L(�) on A with L(
) = 1 and (5) addi-
tionally obeying the condition

(An)n2IN " A; An open; n 2 IN =)
lim
n!1

L(An) = L(A) ; (6)

and the condition

(An)n2IN # A; An 2 A; n 2 IN =)
lim
n!1

L(An) = L(A)

leads, together with the corresponding conju-
gated upper limit U(�) � L(�), to F-probability
and therefore to C-probability. ([13, lemma
2.5,p. 254)])

Some models often used in robust statistics naturally
�t into this framework. Perhaps the most prominent
pseudo-capacity, { which is also a two-monotone ca-
pacity, if 
 is compact { is the (�; �)-contamination-
model (0 < �; �; � + � < 1) containing the contam-
ination model in the narrow sense (� = �) and the
total-variation model (� = 0). There f(�) has the form
f(y) := max ((1� �) � y � � ; 0).

8 
 has to be a complete, separable and metrizable
space and A the corresponding Borel-�-algebra (e.g. 
 =
IRn;A = B).

9The term `pseudo-capacity' is due to [6]. Also the
name `special capacity' used by [18] and [3] is common.



C-probability is a distinguished special case of F-prob-
ability possessing some mathematical peculiarity and
elegance, but it is not comprehensive enough to pro-
vide an exclusive, neat basis for a theory of interval-
valued probability. In the meanwhile Walley's conclu-
sion that there isn't \[...] any `rationality' argument
for 2-monotonicity, beyond its computational conve-
nience" ([23, p. 51]) has experienced a lot of additional
support.10 It turned out that the expressive power
of the concept of interval probability is mainly due
to the extension of the calculus to arbitrary F-prob-
ability �elds.

3 (Level-�-)Maximin tests and
(globally) least favorable pairs

3.1 Neyman-Pearson testing between
interval probabilities

Formulating the Generalized Neyman-Pearson prob-
lem is straightforward. Just as in classical Neyman-
Pearson theory, one probability is tested versus an-
other one, without any (non-vacuous) prior know-
ledge which one of the two is the true one. But now
the hypotheses may consist of F-probabilities instead
of classical probabilities: Consider two F-probability
�elds F0 = (
;A; L0(�)) and F1 = (
;A; L1(�)) on a
measurable space11 (
;A) with disjoint12 structures
M0 andM1. After observing a singleton f!g =: E,

13

which has the probability P0(E) = [L0(E); U0(E)] or
P1(E) = [L1(E); U1(E)] to occur, an optimal decision
via a test '�(�) 2 � has to be made between the two
hypotheses Hi : \The `true' probability �eld is Fi",
i 2 f0; 1g.

Since the concept of randomization is based on
an idealized random-experiment without any non-
probabilistic uncertainty it should be described by
classical probability. Therefore, it is { even in the area
of interval probability { consequent to allow only for
precise (i.e. not interval-valued) probabilities for re-
jecting H0. So the set � of all tests still has to consist

10For a detailed argumentation see:[1, Chapter 1.2.3]).
To mention just one argument, on which it will be re-
curred later: The generalization of the usual parametric
families to interval probability (like the F-normal distri-
bution) along the lines of de�nition 4 leads to F- but not
C-probability.

11Throughout the paper it is assumed that the set f!g
is measurable for every ! 2 
. (This condition is very
mild. It is, in particular, ful�lled by all Polish spaces.)

12To have an alternative-problem in the narrow sense
it is implicitly assumed that M0 and M1 have a positive
distance with respect to an appropriate metric.

13For technical reasons the formulation uses sample-size
1. Situations with sample-size n are included by consider-
ing the independent products (see de�nition 3).

of all A�B-measurable functions '(�) : 
! [0; 1].

Huber and Strassen and also this paper exclusively
consider the case where only the upper limits of the
error probability are taken into account. Then the
Neyman-Pearson principle `Minimize the probability
of the error of the second kind (i.e. IEM1

(1�')) while
controlling for the error of the �rst kind (i.e. IEM0

')'
leads to a complex, non-parametric (not `easily
parametrizable') (level-�-)maximin-problem between
the structures:

De�nition 6 (Level-�-maximin-criterion under
F-probability) Let a level of signi�cance � 2 (0; 1)
be given. A test '�(�) 2 � is called a level-�-maximin-
test (for F0 versus F1), if '

�(�) respects the level of
signi�cance, i.e. UIE'� � � , and '�(�) has maximal
power among all tests under consideration, i.e.

8 2�
�
UIEM0

 � �) LIEM1
 � LIEM1

'�
�
: (7)

3.2 (Globally) least favorable pairs

Based on the idea `If one succeeds in convincing the
hardliner of two parties one has convinced all their
members' one may try to construct level-�-maximin-
tests by searching for two elements q0(�) and q1(�)
of the structures, where the testing is most di�cult.
This \being least favorable" can be formalized as fol-
lows.

De�nition 7 (Globally least favorable pairs) A
pair (q0(�); q1(�)) of K-probabilities is called a glob-
ally least favorable pair14 (for F0 versus F1), if
(q0(�); q1(�)) 2 M0 �M1 and there is a version �(�)
of the likelihood ratio of q0(�) and q1(�) with

8t � 0; 8p0 (�) 2 M0 :
p0 (f! j�(!) > tg) � q0 (f! j�(!) > tg)

(8)

and

8t � 0; 8p1 (�) 2 M1 :
p1 (f! j�(!) > tg) � q1 (f! j�(!) > tg) :

(9)

Proposition 1 (Globally least favorable pairs
and level-�-maximin-tests) If (q0(�); q1(�)) is a
globally least favorable pair for F0 versus F1, then
there exists a best level-�-test for testing the hy-
potheses H0 : fq0(�)g versus H1 : fq1(�)g, which is
a level-�-maximin-test for F0 versus F1, too.

The following lemma shows that it is su�cient to
check the conditions for globally least favorable pairs

14In Huber-Strassen theory it is usual to call
(q0(�); q1(�)) a \least favorable pair". The term \globally"
is added here to make a distinction to \locally least favor-
able pairs", which will be introduced later.



on any arbitrary prestructure. This helps to system-
atize some well known results and plays an important
role in the proofs of the extensions discussed in sec-
tion 5.

Lemma 1 (Globally least favorable pairs and
prestructures) A pair (q0(�); q1(�)) of K-prob-
abilities with (q0(�); q1(�)) 2 M0 �M1 is a globally
least favorable pair for F0 versus F1, if there exist pre-
structures V0 and V1 of F0 and F1 in such a way that
for a suitable version �(�) of the likelihood-ratio rela-
tions (8) and (9) hold for Vi instead ofMi, i 2 f0; 1g.

It should be noted that the property of being globally
least favorable does not depend on the level of signif-
icance making that property also independent from
the sample size:15

Proposition 2 (Product-theorem for globally

least favorable pairs) Let q
(n)
i (�) and F

(n)
i , i 2

f0; 1g, denote the n-dimensional independent prod-
ucts of qi(�) and Fi, respectively. If (q0(�); q1(�))
is globally least favorable for F0 versus F1, then

(q
(n)
0 (�); q

(n)
1 (�)) is globally least favorable for F

(n)
0 ver-

sus F
(n)
1 .

4 Huber-Strassen theorem and the
\necessity" of C-probability

4.1 The main theorems

The fame of the work of Huber and Strassen ([13])
is mainly based on the fact that they succeeded in
showing that a globally least favorable pair always
exists for two-monotone capacities:

Proposition 3 (Huber-Strassen theorem)([13,
p. 257, theorem 4.1]) Let F0 and F1 be C-probability
�elds on a Polish space (
;A) ful�lling (6). Then
there exists a globally least favorable pair for F0 ver-
sus F1.

An extension to F-probability had not been consid-
ered so far, because the following result was under-
stood to show the impossibility of a generalization:

Proposition 4 (\Necessity theorem")16 Con-
sider a �nite space 
, the corresponding power

15In principle, this property was already mentioned {
quite informally { by Huber & Strassen ([13, Corollary
4.2, p. 257] ) without having a clear independence concept
for interval probability. A proof of proposition 2 is given
in [1, p. 223�.], which mainly is based on results from [31,
p. 237f., Satz 2.57] and lemma 1.

16After [13, p. 262, theorem 7.1] (for �nite spaces). [15,
p. 123, theorem 2.3] extended this proposition to arbitrary
Polish spaces.

set P(
); and an F-probability �eld F0 =
(
;P(
); L0(�)) with structure M0. If there exists
for any K-probability p1(�) with p1(�) 62 M0 a K-prob-
ability p0(�) 2 M0 in such a way that (p0(�); p1(�)) is
a globally least favorable pair for F0 versus F1 :=
(
;P(
); p1(�)), then F0 must be a C-probability
�eld.

The consequence has been an exclusive concentra-
tion on models producing C-probability. For instance,
Lembcke entitled his article ([15]), where he intro-
duced his generalization of proposition 4, \The ne-
cessity of [...C-probability] for Neyman-Pearson min-
imax tests". Though { as mentioned in section 2.3
{ this is rather unsatisfactory with regard to the ex-
pressive power of modeling, the restriction on C-prob-
ability has seemed to be the inevitable price to pay for
Neyman-Pearson testing under interval probability.

4.2 A short survey of the work following the
Huber-Strassen theorem

The Huber-Strassen theorem has two di�erent roots,
each connected with one of the authors. Already
in 1964 Strassen formulated proposition 3 for totally
monotone C-probability on �nite sample-spaces ([21,
p. 282, Satz 2.1)]), and recognized one year later([22,
p. 431)]) that indeed two-monotonicity is su�cient.
On the other side, Huber ([12]) managed to \guess" a
globally least favorable pair for contamination neigh-
borhood models.

The synthesis leading 1973 to proposition 3 induced a
lot of work, which is mainly concentrated on two as-
pects. Since on non-compact 
, e.g. 
 = IR, the usual
neighborhood models do not ful�ll (6) (with respect to
the standard topology) the �rst branch was concerned
with the existence of globally least favorable pairs in
such situations. Important steps towards a solution
were obtained among others by [18] and [3], while [6]
succeeded in giving a general and comprehensive an-
swer. Using a general result from topological measure
theory (Kuratowski isomorphism theorem) he showed
that on Polish spaces pseudo-capacities not ful�lling
(6) for the usual topology must nevertheless obey
this condition for some non-standard topology. Con-
ditions, which are su�cient to extent proposition 3
to non-Polish spaces, are given in [14, see especially
p. 30, Satz 6.4].

The other main topic is initiated by the fact that
the Huber & Strassen theorem is a general existence
result without providing a method for constructing
least favorable pairs. Rieder ([18]) presented a so-
lution for the (�; �)-contamination model. Bednarski
([3, p. 402f.]) derived su�cient conditions for pseudo-
capacities under which the likelihood-ratio of the glob-



ally least favorable pair is a monotone function of
the likelihood-ratio of the central-distributions and
described special cases, where the construction can
be done by di�erentiating. Of particular interest
in this context are the contributions of �Osterreicher
and Hafner. Starting with [16] the leitmotif of their
work is the idea to use model-speci�c characteristics
of the generalized risk-function for constructing the
likelihood-ratio of the globally least favorable pair.17

For several neighborhood models they managed to
�nd that transformation of the central distribution,
which leads to the risk-function of the globally least
favorable pair (e.g. for the Prohorov model see: [8]).
Furthermore, Hafner was able to show that similar
methods can also be used for models de�ned via lower
and upper density functions or via lower and upper
distribution functions ([9],[11]). | All these meth-
ods elegantly use particular properties of the special
models considered. Additionally, as a side-product of
[1, Chapter 5], for models on �nite sample spaces a
general algorithm for calculating globally least favor-
able pairs via linear programming can be developed,
which does not assume a certain type of models un-
derlying (see [1, p. 196f]).

There are a lot of other problems, where the solutions
essentially are based on the Huber-Strassen theorem.
Two examples for this are the extension to depen-
dent random variables ([5]) and the development of
asymptotic (level-�-)maximin-tests under sequences
of shrinking neighborhood models18.

5 Globally least favorable pairs under
general interval probability

In section 2.3 it was discussed that C-probability is
too restrictive to serve as an exclusive and indispens-
able minimal conditional for a powerful theory of
interval probability. For an extension of Neyman-
Pearson theory to F-probability allowing for much
more 
exible and comprehensive models �rstly note
that the \necessity" stated in proposition 4 might
be toned down! Its premise is rather arti�cial. If
the existence of a globally least favorable pair for all
possible alternative hypotheses should be guaranteed,
then C-probability is indeed necessary. Surprisingly
it has often been overlooked, that this does not ex-
clude the existence of a globally least favorable pair
in one concrete testing problem, where neither F0

nor F1 are C-probability �elds. This is of particu-
lar interest, because it will turn out that there is a
plenty of relevant models, where both hypotheses are

17Cf. [10] for summarizing some aspects.
18For instance: [19], [4], [20, Chapter 5.4 and the refer-

ences therein]

not described by C-probability �elds, but neverthe-
less globally least favorable pairs exist. One exam-
ple is provided by parametric families with monotone
likelihood-ratio ([1, proposition 6.4, p. 227f.])

Proposition 5 (Existence in the case of mono-
tone likelihood-ratio) Consider a (strict) paramet-
ric family Q = fp�(�) j � 2 �g; � � IR; of (mutually
absolutely continuous) K-probabilities on (IR;B) with
monotone likelihood-ratio in �. If the F-probability
�elds F0(�0) and F1(�1) are parametricly constructed
with respect to Q with parameters �0 = [�L0 ; �

U
0 ] � �

and �1 = [�L1 ; �
U
1 ] � �, �U0 < �L1 , then

(p�U
0

(�); p�L
1

(�))

is a globally least favorable pair for testing F0(�0)
versus F1(�1).

An enrichment gained by allowing for F-probability
is the study of generalized pseudo-capacities. Pseudo-
capacities are based on the `convex distortion' of a
single classical probability used as central distribu-
tion (see remark 2). This can substantially be ex-
tended by considering interval-valued central distribu-
tions. In particular this leads to neighborhood mod-
els of F-probabilities and it also prepares the study of
testing problems with composite interval-valued hy-
potheses.19

Proposition 6 (Generalized pseudo-capacities)
Let F = (
;A; L(�)) be an F-probability �eld with
structureM and f(�) : [0; 1]! [0; 1] a convex function
with f(0) = 0. Then the generalized pseudo-capacity

(f 
 P )(�) := [(f 
 L)(�); (1� f 
 L)(�C)]

with (f 
 L)(
) = 1 and

(f 
 L)(A) := f [L(A)] ; A 2 A n f
g ;

is F-probability (with its structure denoted byM(f

L)).

Furthermore, with M(f 
 p) as de�ned in remark 2,
[p(�)2MM(f 
p) is a prestructure of the correspond-
ing F-probability �eld (f 
F) := (
;A; (f 
 L)(�)).

To �nd least favorable pairs for testing two gener-
alized pseudo-capacities (f0 
 F0) and (f1 
 F1) it
may be promising to proceed in two steps. One may
try to reduce the testing problem �rstly to a testing
problem between so-to-say a pair of `least favorable
F-probabilites', which are more easy to handle but
nevertheless represent the whole testing problem in

19See: [2], where also proofs of proposition 6 and of
theorem 1 are given.



the sense that a level-�-maximin-test between them
is also a level-�-maximin-test for the complex prob-
lem.

In [1, proposition 6.6, p. 231f.] the case of gener-
alized (�; �)-contaminations was considered. Under
some mild conditions it was shown that if there exists
a globally least favorable pair (q0(�); q1(�)) for testing
between the F-probability �elds forming the central
distributions, then there exists a least favorable pair
of F-probabilites, namely just the pseudo-capacities
around q0(�) and q1(�) with the same `distortion func-
tions' f0(�) and f1(�).

To extend this result to other generalized pseudo-
capacities a regularity condition already needed in [3,
theorem 5.1, p. 402] has to be added. For this call
a pair (p0(�); p1(�)) of classical probabilities random-
ization circumventing, if p0(�) and p1(�) are mutually
absolute continuous and for every � 2 (0; 1) there is
a best level-�-test for fp0(�)g versus fp1(�)g which is
non-randomized.

Theorem 1 (Least favorable pseudo-capaci-
ties) Let (f0 
F0) and (f1 
F1) be two generalized
pseudo-capacities on a Polish space with fi(x0) = 0
for an x0 2 (0; 1), i 2 f0; 1g. If there exists a glob-
ally least favorable pair (q0(�); q1(�)) for F0 versus F1,
which is randomization circumventing, then the fol-
lowing holds:

1) There exists a globally least favorable pair for
(f0 
F0) versus (f1 
F1).

2) ((f0 
 q0)(�); (f1 
 q1)(�)) is a pair of least favor-
able pseudo-capacities in the following sense: If
(�q0(�); �q1(�)) is a globally least favorable pair for
(
;A; (f 
 q0)(�)) versus (
;A; (f 
 q1)(�)), then
it is a globally least favorable pair for (f0 
 F0)
versus (f1 
F1), too.

Therefore, often the following procedure to construct
globally least favorable pairs for testing between
generalized pseudo-capacities can be applied:

� Firstly search for a globally least favorable pair
(q0(�)); q1(�)) for testing between the F-prob-
ability �elds forming the central distributions.

� Secondly, if the �rst step proved successful, deter-
mine the globally least favorable pair for testing
between the (non-generalized) pseudo-capacities
around q0(�) and q1(�). According to theorem 1 it
is the globally least favorable pair for the complex
problem.

Then the e�cient construction methods for (non-
generalized) pseudo-capacities cited in section 4.2 can

also be used to construct the least favorable pairs in
these complexer situations. An immediate applica-
tion of theorem 1 is the study of neighborhood models
of parametricly constructed F-probability �elds with
monotone likelihood ratio.

6 Locally least favorable pairs

It turned out that for many situations of practical in-
terest with F- but not C-probability underlying glob-
ally least favorable pairs exist. Even in situations
where no globally least favorable pair exists, one can
often pro�t from the vivid possibility of a reduction to
least favorable elements of the structure. The concept
of globally least favorable pairs can be modi�ed in a
way that the main argument of the proof of proposi-
tion 1 remains valid. If the level of signi�cance � is
given and �xed (as usual in Neyman-Pearson-theory),
it is only of importance to �nd K-probabilities, which
are least favorable for that concrete level of signi�-
cance (`locally') . This is a much weaker condition,
but it will nevertheless prove to be su�cient for for-
mulating equivalents to the propositions 1 and 3 ([1,
Chapter 3.3)]).

De�nition 8 (Locally least favorable pairs)
Let a level of signi�cance � 2 (0; 1) be given.
A pair (q0(�); q1(�)) of K-probabilities is called a
(level-�-)locally least favorable pair (for F0 versusF1),
if (q0(�); q1(�)) 2 M0 �M1, and there exists a best
test '�(�) for fq0(�)g versus fq1(�)g with UIEM0

'� � �

and IEq1'
� = LIEM1

'�:

Proposition 7 (Locally least favorable pairs
and level-�-maximin-tests) If (q0(�); q1(�)) is a
level-�-locally least favorable pair for F0 versus F1,
then there exists a best level-� test for testing the hy-
potheses H0 : fq0(�)g versus H1 : fq1(�)g, which is a
level-�-maximin-test for F0 versus F1, too.

Also the existence can be guaranteed under general
regularity conditions:

Theorem 2 (Existence of locally least favor-
able pairs) If F0 and F1 are ful�lling the condition

20

(An)n2IN " A; n 2 IN =)
lim
n!1

Li(An) = Li(A) ; i 2 f0; 1g ; (10)

then there exists for every given � 2 (0; 1) a level-
�-locally least favorable pair for F0 versus F1.

20Note that condition (10) is a bit stronger than its pen-
dant (6), because it refers to arbitrary measurable sets,
and not only to the open ones. | The topological prop-
erties of the structures, which are caused by these condi-
tions, are compared in [1, Chapter 3.3.4]



This \local perspective", which concentrates on a
�xed level of signi�cance, allows to develop uni-
versally applicable algorithms for calculating level-
�-maximin-tests and locally least favorable pairs on
�nite sample-spaces ([1, Chapter 4 and 5]).

7 Concluding remarks

In general, comparing globally and locally least favor-
able pairs one recognizes that both provide elegant
means to reduce the testing problem to a much sim-
pler one. The main disadvantage of locally least fa-
vorable pairs, however, is that no equivalent to propo-
sition 2 has been proved. For its proof it is essential
that the relations (8) and (9) hold for every t, i.e. that
the least favorable position is global. So it seems as
if in the case of independent repetitions a reduction
to the one-dimensional case were not possible. Ef-
�cient procedures for relating locally least favorable
pairs for testing the n-dimensional product to simpler
situations are open for further research.

The level-�-maximin-criterion considers exclusively
the maximal error. Research on equivalents to least
favorable pairs in situations, where other interval or-
derings are used to judge the probability of error is
still in its infanty.

Another topic deserving detailed investigation should
only be sketched informally here: As mentioned at
the end of section 2.2., by considering interval-valued
expectation as the basic concept one arrives at sets
�M0 and �M1 of classical probabilities, which may be
more general than structures. The de�nitions given in
section 3 to generalize the Neyman-Pearson problem
can be straightforwardly extended to the problem of
testing �M0 versus �M1, by replacingMi (and Fi) with
�Mi, i 2 f0; 1g.

In the case of a �nite sample space results on test-
ing �M0 versus �M1 can be obtained by noticing that
the calculation of level-�-maximin-tests and least fa-
vorable pairs for testing F-probability �elds on �nite
sample spaces according to [1, Chapter 4 and 5] is
only based on the fact that then structures are convex
polyhedrons in the space of all classical probabilities.
Therefore, all the results gained there can be immedi-
ately generalized to all those sets �M0 and �M1, which
arise from a �nite number of restrictions on the ex-
pectations. The same is true for the extension of the
Generalized Neyman-Pearson Lemma given there ([1,
Satz 5.1, p. 169�.]).

For in�nite spaces, however, general conditions for the
existence of (globally or locally) least favorable pairs
for testing �M0 versus �M1 might be di�cult to obtain.

It may be more promising to use the considerations
of section 3 to 6 to derive su�cient conditions. This
means that one takes the indirect way via the struc-
tures Mi, i 2 f0; 1g; of the F-probability �elds Fi
gained from using �Mi as prestructures. If (q0(�); q1(�))
is (globally or locally) least favorable for F̂0 versus F̂1

and if additionally (q0(�); q1(�)) is in �M0 � �M1, then
(q0(�); q1(�)) is least favorable for �M0 versus �M1, too.

The present work was motivated by the insight that
C-probability is too restrictive to serve as an ex-
clusive basis for interval probability. Therefore fur-
ther research should additionally provide some answer
to the question, whether the results gained here are
also of importance beyond the Neyman-Pearson ap-
proach, e.g. for Robust Bayesian analysis. For in-
stance, is it possibly to extend the results gained
there on pseudo-capacities as models for prior belief
to the more 
exible and expressive class of generalized
pseudo-capacities along the lines of proposition 6 and
theorem 1?
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