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Abstract

This paper shows that a "principle of complete
ignorance" plays a central role in decisions based on
Dempster belief functions. Such belief functions
occur when, in a first stage, a random message is
received and then, in a second stage, a true state of
nature obtains. The uncertainty about the random
message in the first stage is probabilizable, in
agreement with the Bayesian principles. For the
uncertainty in the second stage no probabilities are
given. The Bayesian and belief function approaches
part ways in the processing of uncertainty in the
second stage. The Bayesian approach requires that
this uncertainty also be probabilized, which may
require a resort to subjective information. Belief
functions follow the principle of complete ignorance
in the second stage, which permits strict adherence
to objective inputs.
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1  Introduction

Belief functions are widely used as an index of
belief, alternative to (Bayesian) additive
probabilities. Up to now, there has only been a
limited number of studies linking belief functions to
decision making (Smets 1989 [20], Jaffray 1989a
[10] 1994 [12], Strat 1990 [23], Smets & Kennes
1994 [21], Ghirardato 1996 [6], Gilboa &
Schmeidler 1995 [7], Hendon et al. 1996 [9],
Mukerji 1996 [16]).

This paper considers decision making for belief
functions generated in the two-stage manner of
Dempster (1967) [4]. In the second, final, stage, one
element of a set of states of nature will obtain, the
true state of nature. Prior to that, in a first stage a

random message is received, designating a subset of
the state space that will contain the true state of
nature. The uncertainty in the first stage, regarding
the random message to be received, is
probabilizable. That is, it can be expressed in terms
of probabilities, in agreement with the Bayesian
principles. No probabilities are given for the
uncertainty of the second stage, regarding the true
state of nature conditional on the received random
message. Throughout this paper we assume this two-
stage resolution of uncertainty. All claims on belief
functions are restricted to this setup.

The Bayesian approach requires the use of
probabilities in all circumstances, hence also at the
second stage, which may necessitate invoking
subjective information. Here the belief function
approach deviates from Bayesianism. Belief
functions can be explained by a resort, in the second
stage, to the "principle of complete ignorance"
instead of Bayesianism. The principle describes a
method for objective decision making in situations
where there is a total absence of information.

The analysis of this paper is easiest to state when the
probabilities at the first stage are objective and given
beforehand. Hence we assume objective
probabilities in the main text. This assumption is not
essential. The arguments can also be applied when
the first-stage probabilities are subjective, e.g., when
they are derived from decisions. An appealing
derivation along these lines is provided by
Ghirardato (1996) [6]. In his derivation, the (analogs
of) random messages are assumed observable. The
same assumption is also made in our analysis and
this assumption is crucial. It must be possible to
distinguish between the receipt of different random
messages, with a conditioning on each of them being
meaningful. Hence the claims of this paper are
restricted to Dempster belief functions and need not



apply to other belief functions, e.g., in the sense of
Shafer (1976) [19].

This paper is based on the first part of Jaffray &
Wakker (1993 [13], up to Definition 4.3), where it
was already shown informally that the principle of
complete ignorance underlies belief functions in a
two-stage model of uncertainty. The present text
elaborates and formalizes the argument and clarifies
the motivation. It generalizes the result to
completely general preference relations on general
domains that need not satisfy transitivity or
completeness.

Finally, a preparatory mathematical definition is
given. For a finite set S, f is a belief function on S if

f is a function from the power set 2S to [0,1] and

there exists a probability measure ϕ on 2S such that,
for each E ⊂ S,

f(E) = ∑
E’⊂E

ϕ(E')  and  f(∅) = 0, f(S) = 1.

It is well-known that ϕ, called the Möbius inverse of
f, is uniquely determined for each belief function f
(Dempster 1967 [4], Shafer 1976 [19]). In the
following sections, the sets E' will be random
messages and ϕ(E') the probability of receiving E' in
the first stage.

2  The Principle of Complete Ignorance

This section describes the principle of complete
ignorance (PCI) for decision making. This principle
is not the only one underlying decisions based on
Dempster belief functions but I think it is the critical
one. That is, the other principles seem to be
relatively unobjectionable.

This section also describes the main objection
against the PCI: Whereas weak monotonicity
principles can always be respected, strict
monotonicity has to be abandoned.

First the PCI is described, informally, in terms of
"relevance" of information. As this text adheres to
the principles of decision theory and assumes
decision making as the empirical primitive, the
PCI will subsequently be described in terms of
decision principles. We use the term state space in
the customary manner, i.e. it is a set of which
exactly one element is the "true" state, the other
states are not true, and there is uncertainty about
which state is the true state. Throughout, the state
space S is finite.

The PCI, focused on S, distinguishes only the
following three states of information, or "truth
values."

• If E = S, then E is certain.

• If E = ∅, then E is impossible.

In all other cases, E is uncertain, i.e.:

• If ∅ ≠ E ≠ F, then E is uncertain.

Thus, the PCI is based on a three-valued logic.

If E is uncertain or certain, then we also call E
possible. If the PCI is focused on S then we call S
the focal event of complete ignorance. We also
consider cases where the PCI is focused on a subset
F of S. This can occur for instance if the information
has been received that F is true. In this case, parts of
events outside of F should be ignored. The PCI,
focused on F, distinguishes the following states of
information.

• If E ⊃ F, then E is certain.

• If E∩F = ∅, then E is impossible.

In all other cases, E is uncertain, i.e.:

• If ∅ ≠ E∩F ≠ F, then E is uncertain.

The state of uncertainty is completely characterized,
under the PCI, by the focal event. Before giving a
formal definition of the PCI, i.e. a definition in terms
of preference conditions, let us discuss in the
following page an example of decision making that
is in line with the PCI.

EXAMPLE 1 (gambles for money). Assume that S =
{s1, ..., sn} for n ≥ 3. By (s1,1; s2,0; ...; sn,0) we denote
a gamble yielding $1 if s1 happens and $0 otherwise.
Other gambles are denoted similarly. The PCI
implies the following equivalence:

 (s1,1; s2,0; ...; sn,0)  ~  (s1,0; s2,1; s3,0; ...; sn,0).

For both gambles the state of knowledge about the
outcome is the same. Under the left gamble, the
event of receiving outcome 1 is the event s1, which
is possible but not certain, i.e. it is uncertain. The
event of receiving outcome 0 is the event {s2, ..., sn},
which is again uncertain. In short, it is certain that
the outcome will be from {0,1}, it is uncertain if it
will be 1 or 0, and it is impossible that the outcome



will be another value. The same truth values apply to
each outcome event under the right gamble, again 0
and 1 are uncertain outcomes, etc. Therefore, the
PCI assumes equivalence.

In our decision model, the decision maker must
choose one of the options available to him and
therefore incomparability due to a refusal to choose
cannot occur. Several authors have argued that, if
refusal to choose is impossible, then a distinction
should be made between deliberate and arbitrary
choices. Deliberate choices are made if sufficient
evidence is available, arbitrary choices if the
available evidence is considered insufficient. This
viewpoint underlies Cohen & Jaffray (1980) [3] as
well as many upper and lower probability models
(Smith 1961 [22], Good 1983 [8], Kyburg 1983 [14],
Walley 1991 [24] Section 5.6, Walley 1996 [25] p.
53 in reply to Lindley's objection to indecision).
Such an approach, when applied to decisions,
invokes additional empirical primitives outside the
realm of observable choice. We must then be able to
meaningfully distinguish between deliberate and
arbitrary choice. Therefore this approach lies outside
the domain of classical decision theory upon which
this paper is based, and will not be assumed here.1

In the displayed equivalence, the PCI does not yet
deviate from the Bayesian principle of insufficient
reason . However, the PCI also implies the following
equivalence:

(s1,1; s2,0; ...; sn,0)  ~  (s1,0; s2,1; s3,1; s4,0; ...; sn,0).

Again, the same states of knowledge about the
outcome result from both gambles. For the right
gamble, the event of receiving outcome 1 is event
{s2, s3}, which is uncertain. The event of receiving
outcome 0 is event {s1, s4, ..., sn}, which is again
uncertain. In this equivalence, the PCI deviates from
the Bayesian principle of insufficient reason. The
PCI does not accept cardinal information about sets
and neither distinctions in size between different
uncertain events (in agreement with Cohen &
Jaffray's, 1980 [3], "noninfluence of formalization"
or Walley's, 1996 [25], "principle of representation
invariance," and deviating from some objective

                                                     

1 This paper does permit incompleteness of preference
in the sense of choice situations never being considered.
Once a choice situation is considered, however, a
choice is compulsary.

Bayesian approaches). Hence no claim is made that
the event {s2, s3} be larger than the event {s1}.

A problematic feature of the PCI, and in my optinion
its most critical property, appears from the following
equivalence.

(s1,0; s2,1; s3,0;…;sn,0) ~ (s1,0; s2,1; s3,1; s4,0;…;sn,0).

The equivalence follows from the PCI as in the
above reasonings because for both gambles all
outcome events have the same truth value. However,
the right gamble dominates the left gamble and most
people will strictly prefer the right gamble to the left
gamble. The case may be somewhat less problematic
than seems at first sight. Also under expected utility,
gambles can be equivalent even though one always
yields at least as much as the other in all states and
strictly more in some states. Then expected utility
will say that the latter states constitute a "null event."
Similarly, the PCI can be defended by arguing that,
if $1 is received on event s2, then adding event s3 to
that event does not change the truth value and in that
sense s3 can be considered a null event.

In summary, the PCI implies a violation of some
strict monotonicity conditions which is, I think, the
most critical aspect of the PCI and therefore, as is
the claim of this paper, of Dempster belief functions.

  Ä

Examples of decision principles that agree with the
PCI are maximax and maximin decision making
(Arrow & Hurwicz 1972 [2]). Cohen & Jaffray
(1980) [3] consider a somewhat different approach
to the PCI. Whenever there is a conflict between the
above PCI and strict monotonicity, priority is given
to strict monotonicity. As the authors point out, this
approach necessarily requires violations of
transitivity. We now turn to the formal definition of
the PCI in terms of decision principles. To that end,
� denotes an outcome space. Acts are mappings
from S to �. In Example 1, � was � and "gambles"
were acts. We assume that a preference relation u is
given on the set of acts. A natural condition for
preferences is transitivity. The condition is,
however, not needed in the formal analysis. Let me
emphasize that we neither need to assume
completeness of preference, i.e. it is permitted that
no choice or preference between two acts is
observed. The set of acts considered can also be any
arbitrary subset of the set of all functions from S to



�. In this respect, the approach of this paper is
extremely flexible.

The preference conditions presented hereafter are
formulated in terms of a "preferential equivalence"
condition: Two acts d and d' are preferentially
equivalent if d' can be substituted for d in each
preference. That is, dud'' if and only if d'ud'', and
d''ud if and only if d''ud'. Under common
assumptions on preferences, such as weak ordering,
preferential equivalence is the symmetric part of
preference, i.e., it is the common equivalence
relation.

We discussed “relevance of information” without
yet formalizing it. A decision-theoretic formalization
should be in terms of acts and outcomes. Therefore
we now relate the uncertainty about S to uncertainty
about the outcomes of acts. Assume that F ⊂ S is the
focal event of complete ignorance and d is an act
under consideration. The following can be said
about the event of outcomes being contained in B,
for any subset B of �:

• If B ⊃ d(F), then B is certain;

• If B∩d(F) = ∅, then B is impossible;

In all other cases, B is uncertain, i.e.:

• If ∅ ≠ B∩d(F) ≠ d(F), then B is uncertain.

That is, for d the state of information on the outcome
set can be described as complete ignorance focused
on d(F). Under complete ignorance, the three truth
values give a complete, "sufficient," description of
the degree of uncertainty that is relevant for the
evaluation of an act. Nothing else regarding the
uncertainty about the state space is considered
relevant. Thus, if for two different acts d and d', the
truth values generated by the two acts coincide on
the entire outcome space, then the acts should be
equivalent in every respect regarding their
preference value. This occurred in Example 1 for the
acts ("gambles") (s1,0; s2,1; s3,0; ...; sn,0) and (s1,0;
s2,1; s3,1; s4,0; ...; sn,0); take here � = �. Under both
acts, any outcome set that contains both 1 and 0 is
certain, any outcome set that contains neither 1 nor 0
is impossible, and the remaining outcome sets, that
either contain 1 or 0 but not both, have truth value
uncertain. In other words, both acts generate
complete ignorance focused on {0,1} over the
outcome set �.

PRINCIPLE OF COMPLETE IGNORANCE (PCI), focused
on the event F ⊂ S: Acts d and d' are preferentially
equivalent whenever d(F) = d'(F).  Ä

Complete ignorance is completely characterized by
its focal event F. Given an act d, the information
regarding the outcome can then be described as
complete ignorance focused on d(F). Under some
natural preference conditions, including a weak
monotonicity condition, it can be proved that the
only decision making compatible with the PCI is
decision making where an act d is evaluated by
U(max(d(F)),min(d(F))). This result will not be used
in what follows, hence is not elaborated.

In summary, the PCI permits complete objectivity
by using only a minimal amount of information but
in return it is inconsistent with Bayesian rationality
principles, mainly by violating strict monotonicity.

3  Dempster Belief Functions Derived
from the Principle of Complete
Ignorance

In this section, a decision-theoretic basis for belief
functions is given that brings to the fore the role of
the PCI. We define a decision model based on the
two-stage model of uncertainty described in the
introduction and add some assumptions to the PCI. I
think that the added assumptions are relatively
uncontroversial and that the critical assumption
underlying Dempster belief functions is the PCI.
That is, Dempster belief functions are appropriate if
and only if the PCI is accepted. We now turn to the
defense of that claim. Because the PCI is a trivial
case of the belief-function approach (with only one
possible random message), we will concentrate on
the derivation of belief functions from the PCI.

Our general two-stage model is depicted in Figure 1.
The two-stage modeling of uncertainty considered
here is especially useful in the modeling of
incomplete data (Jaffray 1989b [11]). Other two-
stage decision models with uncertainty probabilized
in one stage but not the other are considered in
statistics and in the decision model of Anscombe &
Aumann (1963) [1].

Let us start with the second stage of our model and
define acts. An act d is a mapping from the state
space S to the outcome space �. If s is the true state
of nature, then the outcome resulting from d is d(s)
(c in Figure 1). The uncertainty about the true state
of nature translates into uncertainty about the



outcome resulting from d. For instance, for an
outcome c∈�, the event of c resulting from d is
d−1(c), i.e. it consists of the states of nature that are
mapped into c by d. More generally, for any subset
B of � the event that d's outcome is in B is identical
to the event d−1(B), i.e. the set of states that are
mapped into an outcome in B by act d.

The information about which state of nature is true is
somewhat complicated and is described by a
message space Ω. A message will be received in
stage 1 which specifies a subset of S that contains
the true state of nature. But the decision maker does
not know beforehand what message he will receive.
He knows that the message is an element of the
message space Ω but is uncertain which element of
Ω it is. This uncertainty is probabilized, that is, a
probability measure π on Ω describes the probability
distribution regarding which message will be
received. For each possible message ω, a subevent
Mω of S is specified. The decision maker knows
that, if ω is received, then the true state of nature is
contained in Mω. Because he is uncertain about
which message he will receive, he is uncertain what
the subset Mω is. Obviously, if ω is the message
received and the decision maker has chosen act d,
then the resulting outcome will be an element of
d(Mω). In this model, the state space does not
specify all uncertainty involved because it does not
specify the random message received. One state of
nature can be combined with different random
messages. This is the characteristic property of the
Dempster model.

We consider both posterior preferences uω over
acts, pertaining to choices between acts made after

the receipt of a random message ω, and (prior)
preferences u over acts, pertaining to choices made
prior to that receipt. Throughout, unqualified
preferences are understood to be prior, and so are
statements about preferential equivalence. I will
argue that (prior) preferences are based on belief
functions if posterior preferences satisfy the PCI.

Throughout, the outcome that will result for the
decision maker is completely determined by the act
d chosen by the decision maker and the true state of
nature s. The only impact of the message ω on the
outcome is "through" the true state s. Given the true
state of nature s, the message ω does not have any
more impact on the outcome of an act d.

We can now define a belief function on S. The
decision principles introduced later will imply that
this belief function comprises all the information
regarding uncertainty that is relevant for (prior)
decision making. For now, the belief function is a
mathematical construct without yet any claim about
empirical or decision-theoretic content. First note
that the probability measure π and the mapping ω �

Mω generate a probability measure ϕ on 2S, the
collection of all subsets of S, in the natural manner.
In particular, ϕ(E) = π(ω: Mω = E) for all events E.
ϕ(E) describes the probability that the message
received will specify E as the event containing the
true state of nature. Now we can define the belief
function f through ϕ as described in Section 1, i.e.
f(E) = ∑

E’⊂E
ϕ(E'). f(E) is precisely the probability

that the random message implies certainty of E. So
the belief function describes, in short, the
"probability of certainty." Other terms are
probability of provability (Pearl 1988 [17]),
probability of knowing (Ruspini 1987 [18]),
probability of necessity (Dubois & Prade 1988 [5]).

Next we describe two decision principles (where the
second strengthens the first) that imply that
decisions must be based on the belief function. The
first principle adapts the PCI for posterior
preferences to prior preferences. Now the PCI is
applied conditionally given each ω.

PRINCIPLE 1 (prior PCI).  If, for each ω∈Ω, d(Mω)
= d'(Mω), then d and d' are preferentially equivalent.
Ä

This principle reduces to the PCI if there is only one
ω. Consider the posterior situation where the
decision maker has received the message ω. Then

FIGURE 1 (The two-stage model)
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the equality d(Mω) = d'(Mω) implies, by the PCI,
that d and d' are preferentially equivalent. Moreover,
then d and d' generate exactly the same information
regarding the outcome, i.e. each outcome set B ⊂ �
has the same truth value (certain, impossible, or
uncertain) under d as under d'. If the information
regarding the outcomes generated by d and d' is the
same for each ω, then prior preferential equivalence
between d and d' is required. To emphasize the
elementary nature of Principle 1, let me display, and
discuss in some detail, another condition that is not
needed. In the discussion of this principle we
assume, for simplicity, that u and each uω are weak
orders (transitive and complete). Hence, preferential
equivalence coincides with the symmetric parts of u

and uω, denoted by ~ and ~ω.

(PRINCIPLE, NOT VALID FOR BELIEF FUNCTIONS)  If,
conditional on each ω∈Ω, d ~ω d' (posterior
equivalence), then d ~ d' (prior equivalence).  Ä

The agreement of prior and posterior preference just
displayed resembles somewhat the "dynamic
consistency" condition from dynamic decision under
risk (Machina 1989 [15]).  In rich models, where
each event can occur in a first and also second stage,
the latter condition comprises a nontrivial part of the
"separability" or "independence" preference
condition that characterizes Bayesianism. Such a
logic is not assumed in our defense of the prior PCI.
Our defense is as follows. The prior PCI assumes
that the uncertainty about the generated outcome is
identical for d and d', given each ω. If the
uncertainty-information is identical for each ω, then
it is also identical prior to the receipt of ω. Finally,
only as a consequence of identical uncertainty
regarding the resulting outcome, d and d' are
required to be preferentially equivalent. We do not
impose consistency between prior and posterior
preference, but between prior and posterior identity
of information.

As a preparation for the second principle, we
reformulate the first principle:

d and d' are preferentially equivalent whenever, for
each B ⊂ �,

{ ω ∈ Ω: d(Mω) = B}  =  {ω ∈ Ω: d'(Mω) = B}.

Now we turn to the second principle. It reinforces
the first by assuming that the only relevant aspect of

the ωs is the probability mass they carry and that
other than that their identity is not relevant. This is
typically the assumption underlying decision under
risk.

PRINCIPLE 2 (neutrality axiom).  Acts d and d' are
preferentially equivalent whenever, for each B ⊂ �,

π{ ω ∈ Ω: d(Mω) = B}  =  π{ ω ∈ Ω: d'(Mω) = B}.  Ä

This principle characterizes the relevance of belief
functions for decision making. That is, the
preference value of an act is completely determined
by the belief function it generates over the outcome
set. The proof of the following theorem is given in
the Appendix.

THEOREM 1.  Neutrality holds if and only if: acts d
and d' are preferentially equivalent whenever fÎd −1 =
fÎd '−1.  Ä

Under neutrality, all the information about the
uncertainty regarding S and Ω relevant for decision
making is apparently captured by the belief function
f. In statistical terminology, the belief function
provides a "sufficient" description of the uncertainty.
The neutrality axiom has thus provided a decision-
theoretic foundation for belief functions in decision
making, based on the PCI. Other than that, the
theorem leaves complete freedom regarding the
manner in which decisions are derived from belief
functions.

It is logically possible that prior preferences are
based on a belief function, so are as if based on the
PCI and its extensions, but that preferences after
actual receipt of a random message are different and
do not comply with the PCI. Dynamic consistency
principles could be formulated to rule such cases
out. It was already explained before that the PCI can
be considered a trivial case of the belief-function
approach with only one possible random message.

4  Summary and Conclusion

Imagine decisions must be made while facing
uncertainty, and the uncertainty is resolved in two
stages. The first-stage uncertainty can be
probabilized but the second not. Imagine the
decision maker does not want to deal with the
second-stage nonprobabilized uncertainty in a
Bayesian manner, but instead wants to follow the
principle of complete ignorance, e.g. so as to



preserve  complete objectivity of the decision
procedure. Then, is the claim of this note, the
decisions necessarily go by belief functions. So as to
establish this claim, the principle of complete
ignorance was reinforced, first, to the prior principle
of complete ignorance, second, to the neutrality
principle. These reincorcements seem relatively
uncontroversial, hence the crucial step from
Bayesianism to Dempster belief functions seems to
be the adoption of the principle of complete
ignorance.
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Appendix.  Proof of Theorem 1

Consider the following four equalities, each imposed
on all B ⊂ �, and discussed next.

π{ ω: d(Mω) = B}  =  π{ ω: d'(Mω) = B};

π{ ω: d(Mω) ⊂ B}  =  π{ ω: d'(Mω) ⊂ B};

π{ ω: Mω ⊂ d
−1(B)}  =  π{ ω: Mω ⊂ d'−1(B)};

f(d−1(B)) = f(d'−1(B)).

Equivalence of the first two equalities can be proved
by induction with respect to the number of elements
of B, equivalence of the second and third equalities
follows from elementary set-theory, and equivalence
of the last two equalities follows from the definition
of the belief function f. Neutrality requires that the
first equality, for all B, imply that d and d' are
preferentially equivalent, the second part of
Theorem 1 requires the same implication for the
fourth equality. By the equivalence of the first and
fourth equalities, the theorem follows.
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