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Abstract

We consider discrete possibilistic systems for which the
available information is given by one-step transition pos-
sibilities and initial possibilities. These systems can be
represented by a collection of variables satisfying a possi-
bilistic counterpart of the Markov condition. This means
that, given the values assumed by a selection of variables,
the possibility that a subsequent variable assumes some
value is only dependent on the value taken by the most
recent variable of the selection. The one-step transition
possibilities are recovered by computing the conditional
possibility of any two consecutive variables. Under the
behavioural interpretation as marginal betting rates against
events these ‘conditional’ possibilities and the initial pos-
sibilities should satisfy the rationality criteria of ‘avoiding
sure loss’ and ‘coherence’. We show that this is indeed the
case when the conditional possibilities are defined using
Dempster’s conditioning rule.

Keywords. Possibilistic Markov system, Markov condi-
tion, coherence, Dempster’s conditioning rule.

1 Introduction

Possibility measures are supremum preserving set map-
pings. They were proposed by Zadeh [10] for modelling
linguistic information in natural language. Formally, a
possibility measure� on the power set}(
) of a non-
empty set
 is a (set) mapping taking elements of}(
)
to values in the real unit interval[0; 1], such that for any
collection(Aj j j 2 J) of elements of}(
):

�(
[
j2J

Aj) = sup
j2J

�(Aj):

The 
 � [0; 1]-mapping� defined by�(!) = �(f!g),
! 2 
 is called thedistributionof�. Obviously,� is com-
pletely determined by�, since for anyE 2 }(
): �(E) =
sup!2E �(!). The possibility measure� and its distribu-
tion � are callednormal if �(
) = sup!2
 �(!) = 1.
The triple(
; }(
);�
) is called apossibility space.

Possibility measures can be given the behavioural inter-
pretation of upper probabilities [8]. On this view, the value
�(A), A 2 }(
) is interpreted as a subject’s infimum ac-
ceptable rate for betting against the eventA.1 This means
that the subject is willing to bet against the eventA at any
rate� > �(A), giving him� units of utility whenA does
not occur, and�� 1 units whenA occurs. The net reward
resulting from the bet at rate�(A) can also be written as:

G(A) = �(A)� IA;

whereIA is the indicator function ofA. The behavioural
interpretation of the possibility measure� implies that all
gamblesG(A), A 2 }(
) aremarginally acceptableto
the subject, meaning that he is disposed to acceptG(A)+Æ
for all Æ > 0. Moreover, a rational subject should consider
positive linear combinations of acceptable gambles as ac-
ceptable [8].

To ensure that the values�(A), A 2 }(
) are assessed in
a consistent way,� should be coherent, i.e., for any natural
numbern, for any non-negative real numbers�o; : : : ; �n
and for any eventsAo; : : : ; An 2 }(
), it must hold that

sup
!2


2
4 nX
j=1

�jG(Aj)(!)� �oG(Ao)(!)

3
5 � 0: (1)

If (1) fails and�o = 0, then there is someÆ > 0 such thatPn
j=1 �j [G(Aj) + Æ] � �Æ. This is a ‘sure loss’ since

there is a positive linear combination of acceptable gam-
bles that is uniformly negative, meaning that the subject
cannot avoid losing some positive amount of utility. The
coherence condition (1) guarantees the subject avoids the
incurrence of sure losses.

If (1) fails and�o > 0, then there is someÆ > 0 such that
[�(Ao)� Æ]� IAo

� ��1o
Pn

j=1 �j [G(Aj)+ Æ]. Since all
gamblesG(Ai) + Æ, i 2 f1; : : : ; ng are acceptable to the
subject, the linear combination��1o

Pn
j=1 �j [G(Aj) + Æ]

is acceptable too, and so is the gamble[�(Ao)� Æ]� IAo
,

1All gains and losses from betting are assumed to be mea-
sured on a linear utility scale.



as it yields a uniformly higher gain. As a result, the sub-
ject can be induced to bet againstAo at the rate�(Ao)�Æ,
which is strictly smaller than hisinfimumacceptable bet-
ting rate�(Ao). Coherence rules out this type of incon-
sistency.

For the special type of upper probabilities, namely possi-
bility measures, we are dealing with here, coherence and
avoiding sure loss both reduce to the requirement of nor-
mality. Thus a possibility measure� is a coherent upper
probability provided that it is normal [3]. We shall fur-
thermore call a distribution� coherent when the possibil-
ity measure associated with� is coherent, or equivalently,
when� is a normal distribution.

A model constituted by the assessments of a subject fac-
ing uncertainty may be more complex. In Section 2, for
instance, we consider a discrete possibilistic system that
is specified by one-step transition possibilities and initial
possibilities. We explain that this system can be mod-
elled by a collection of possibilistic variables. Similarly
to a stochastic variable, a possibilistic variable [1, 2] has
a basic space
 and asample spaceX . The available in-
formation is represented by a possibility measure�
 on
(
; }(
)). Any 
�X-mappingf is then called a possi-
bilistic variable inX . TheX � [0; 1]-mapping�f , given
for anyx 2 X by �f (x) = �
(f

�1(fxg)), is called the
possibility distribution functionof the possibilistic vari-
ablef . We denote by�f the unique possibility measure
on}(X) with distribution�f . The joint possibility distri-
bution functionof a finite sequencefo; : : : ; fn, n 2 N of
possibilistic variables, having basic space(
; }(
);�
)
and sample spacesXo; : : : ; Xn, is given in any element
(xo; : : : ; xn) 2 �

n
i=oXi by

�(fo;:::;fn)(xo; : : : ; xn) = �
(
n\
i=0

f�1i (fxig)):

The possibility measure on}(�n
i=oXi) with distribution

�(fo;:::;fn) is denoted by�(fo;:::;fn). Using Dempster’s
conditioning rule we explain in Section 2 how the one-step
transition possibilities can be recovered as, or interpreted
as, the conditional possibilities of any two consecutive
variables. In fact, we indicate that the variables also sat-
isfy a possibilistic counterpart of the well-known Markov
condition in the theory of stochastic Markov processes [4].

If we want to give a behavioural interpretation to the initial
possibilities and the one-step transition possibilities, it is
mandatory that we verify whether or not the models these
possibilities are used to construct are coherent. It has been
proven by Walley and De Cooman [9] that the uncondi-
tional joint possibility distribution function�(fo;f1) of any
two possibilistic variablesfo andf1 having finite sample
spacesXo andX1 together with the conditional possibil-
ity distribution functions�f1jfo(� j xo), xo 2 Xo — cal-
culated by some conditioning rule — off1, given thatfo

assumes some valuexo 2 Xo, constitute a coherent model
if and only if the conditional possibilities�f1jfo(x1 j xo),
(xo; x1) 2 Xo �X1 satisfy

DE�f1jfo(x1 j xo) � �f1jfo(x1 j xo) � NE�f1jfo(x1 j xo)
(2)

whenever�fo (xo) > 0. According to (2) the foregoing
model is coherent if and only if the conditional possibil-
ities are intermediate between those calculated by Demp-
ster’s rule and natural extension. Recall that for any couple
of elements(xo; x1) 2 Xo�X1, Dempster’s conditioning
rule yields the following value for the conditional possi-
bility DE�f1jfo(x1 j xo):

DE�f1jfo(x1 j xo) =

8<
:
�(fo;f1)(xo; x1)

�fo(xo)
if �fo(xo) > 0

1 if �fo(xo) = 0;

where the least committal, or most conservative, value
is taken forDE�f1jfo(x1 j xo) when �fo(xo) = 0. We
shall denote byDE�f1jfo(� j xo) the possibility mea-
sure on}(X1) that is associated with the distribution
DE�f1jfo(� j xo). As the natural extension rule for condi-
tioning has no further role in this paper, we refer to [9] for
its explicit definition.

In Section 3 we investigate the coherence of models with
the following more general structure: the joint possibil-
ity distribution function of a finite collection of linearly
ordered possibilistic variablesfo; : : : ; fN , N 2 N n f0g
together with the conditional possibility distribution func-
tions of any variablefn+1, n 2 f0; : : : ; N � 1g, given
that the preceding variables(fo; : : : ; fn) jointly assume
some value(xo; : : : ; xn) 2 Xo � � � � �Xn. Here as well,
all variables are assumed to have a finite sample space.
We show that coherence is guaranteed if we additionally
require that all conditional possibilities should be deter-
mined using Dempster’s conditioning rule.

From this result we may conclude that a behavioural in-
terpretation of the model in terms of possibilistic variables
that we proposed in order to represent the previously intro-
duced discrete possibilistic system makes sense, provided
that all initial possibilities are normal and that the one-
step transition possibilities are computed using Demp-
ster’s conditioning rule.

2 Discrete Possibilistic Systems

Suppose that we are dealing with a discrete possibilistic
system having the set of all natural numbersN as its time
set. N is taken to be ordered by the usual linear ordering
� of natural numbers.

Assume that we have the following information about the
system:



� Xn, n 2 N is the set of all possible states for the
system at timen;

� initial possibilities q, i.e., aXo � [0; 1]-mappingq
such thatq(x) is the possibility that the system is in
statex 2 Xo at time0;

� aXn �Xn+1 � [0; 1]-mappingnP, n 2 N such that,
for any couple(x; y) 2 Xn�Xn+1, nP(x; y) denotes
theone-step transition possibilityfrom statex at time
n to statey at timen + 1, and that is normalized as
follows:

sup
y2Xn+1

nP(x; y) = 1; 8x 2 Xn:

Consequently, the partial mappingnP(x; �) is the dis-
tribution of a unique, normal possibility measure on
(Xn+1; }(Xn+1)) for every elementx 2 Xn wheren 2
N. The mappingq can be viewed as the distribution of a
unique possibility measureQ on (Xo; }(Xo)).

Using this information we want to determine a consistent
collection of distributions giving the possibility that the
system visits a finite number of statesxo; : : : ; xn, n 2 N

at the corresponding times0, : : : , n. We are furthermore
interested in determining thek-step transition possibilities
of the system, wherek � 2. We shall first give a number
of formulae for these possibilities, and then show how the
formulae can be justified.

We define thek-step transition possibilitynP
(k)

(x; y)
from statex 2 Xn at timen to statey 2 Xn+k at time
n+ k as:

nP
(k)

(x; y) = sup
(zn;:::;zn+k)2�

n+k
i=n

Xi
zn=x;zn+k=y

n+k�1Y
j=n

jP(zj ; zj+1):

(3)

For k = 1 the above formula naturally simplifies to

nP
(1)

(x; y) = nP(x; y). In a similar way we define
the possibility�f0;:::;ng(xo; : : : ; xn) that some ‘joint state’
x = (xo; : : : ; xn), n 2 N is assumed by the system at the
corresponding times0, : : : , n as:

�f0;:::;ng(x) =

(
q(xo)

Qn�1
j=0 jP(xj ; xj+1) if n � 1

q(x) if n = 0:

(4)

Obviously,�f0;:::;ng can be considered as the distribution
of a possibility measure on(�n

i=oXi; }(�
n
i=oXi)).

By invoking our possibilistic Daniell-Kolmogorov the-
orem [6, 7], it is possible to construct a possibility
space(
;R
;�
) and a family of possibilistic variables
(fn j n 2 N) with basic space(
;R
;�
), for which the

corresponding sample spaces are given byXn, n 2 N,
such that

�(fo;:::;fn) = �f0;:::;ng; 8n 2 N: (5)

To establish this, the following choices can be made:

� (
;R
) = (�+1
i=oXi; }(�

+1
i=oXi));

� for �
 take the possibility measure�N on
(�+1

i=oXi; }(�
+1
i=oXi)) with distribution �N whose

value in a sequencex = (xo; : : : ; xn; : : : ) 2
�+1
i=oXi is given by

�N(x) = inf
n2N

�f0;:::;ng(xo; : : : ; xn)

Note that �N is the pointwise greatest (least commit-
tal or most conservative) distribution on�+1

i=oXi whose
marginal on�n

i=oXi is �f0;:::;ng for all n 2 N.

We now give a justification for the formulae (3)–(5). Any
collection (fn j n 2 N) of possibilistic variables repre-
senting the information�f0;:::;ng, n 2 N as expressed
by (3)–(5) satisfies a possibilistic analogon of the Markov
condition [4, 5]. To establish this result, we use Demp-
ster’s conditioning rule.

The following, obvious relation then holds between the
transition possibilities and the conditional possibilities,
formed with the possibilistic variables in the collection
(fn j n 2 N). Consider two natural numbersn andk 6= 0
and let(x; y) 2 Xn �Xn+k, then it follows from (3)–(5)
that

DE�fn+kjfn(y j x) = nP
(k)

(x; y) if �fn(x) > 0: (6)

The possibilistic variables(fn j n 2 N) are furthermore
conditionally independent in the following way. Consider
a finite subsetfni j i 2 f1; : : : ; kgg of the time setN such
thatk 2 N n f0g andn1 < � � � < nk. Letn 2 N such that
nk < n. If x = (xn1 ; : : : ; xnk ) 2 �

k
i=1Xni andy 2 Xn,

then

DE�fnj(fn1 ;:::;fnk )(y j x) = DE�fnjfnk (y j xnk ); (M )

provided that�(fn1 ;:::;fnk )(x) > 0. Condition (M ) can be
regarded as a possibilistic analogon of the Markov con-
dition [4]. In [5] we used condition(M) as a starting
point for the development of a formal, measure-theoretic
account of possibilistic Markov families (processes), i.e.,
families of possibilistic variables satisfying property(M).

Families of possibilistic variables satisfying condi-
tion (M) also satisfy an analogon of the Chapman-
Kolmogorov equation [4].

3 Consistency Criteria for Unconditional
and Conditional Possibilities

In the behavioural theory of imprecise probabilities two ra-
tionality criteria have a central part: avoiding sure loss and



coherence. If we want to give a behavioural interpretation
to the previously introduced initial possibilities, transition
possibilities, etc., it is mandatory that we verify whether
or not these criteria are satisfied for the models in terms of
possibilistic variables constructed from these possibilities.
This is the problem discussed in the present section.

Consider a finite collection of possibilistic variablesfo,
: : : , fN , N 2 N n f0g. LetXo, : : : , XN be their corre-
sponding sets of possible values. Assume that all the sets
Xo, : : : , XN are finite. For notational ease we denote the
Cartesian product�N

i=oXi byX .

Let�(fo;:::;fN ) be the joint possibility distribution function
of the variablesfo, : : : , fN , and let�(fo;:::;fN ) be the
possibility measure on}(X ) generated by�(fo;:::;fN ), that
is,

�(fo;:::;fN )(A) = max
x2A

�(fo;:::;fN )(x); 8A 2 }(X ):

It will be assumed that�(fo;:::;fN ) is normal. Conse-
quently,�(fo;:::;fN ) and all marginals that can be derived
from�(fo;:::;fN ) are coherent upper probabilities. For any
subsetA ofX the value�(fo;:::;fN )(A) may be interpreted
as a subject’s marginally acceptable upper rate for betting
againstA. The net reward resulting from such bet is given
by

G(A) = �(fo;:::;fN )(A) � IA;

whereIA is the indicator function ofA.

Consider now two non-empty, disjoint subsets of
f0; : : : ; Ng specified as follows:

fni j i 2 f1; : : : ; kgg

wherek 2 N n f0g such that0 � n1 < � � � < nk � N ,
and

fmj j j 2 f1; : : : ; `gg

where ` 2 N n f0g such that0 � m1 < � � � <

m` � N . The possibility distribution function ofg =
(fn1 ; : : : ; fnk) is given by the marginal�(fn1 ;:::;fnk ) of
�(fo;:::;fN ). Similarly, the possibility distribution func-
tion of h = (fm1

; : : : ; fm`
) is given by the marginal

�(fm1 ;:::;fm`
) of �(fo;:::;fN ). For notational ease we de-

note the Cartesian products�k
i=1Xni and�`

j=1Xmj
by

Xg andXh, since they are the domains of the possibility
distribution functions ofg andh.

For all y 2 Xh write �gjh(� j y) for the conditional pos-
sibility distribution function ofg given thath assumes
the valuey — calculated by some conditioning rule from
information contained in�(fo;:::;fN ). Let �gjh(� j y) be
the possibility measure on}(Xg) generated by�gjh(� j y),

i.e., for allB 2 }(Xg):

�gjh(B j y) = maxf�gjh(x j y) j x 2 Bg: (7)

Consider a subsetB of Xg and an elementy =
(ym1

; : : : ; ym`
) of Xh. Two interpretations may be given

to �gjh(B j y) [8]. Under theupdating interpretation
�gjh(B j y) is the marginally acceptable upper rate for
betting againstB that a subject would adopt after learn-
ing that h = y. Under thecontingent interpretation
�gjh(B j y) is the marginally acceptable upper rate for
betting againstB contingent onh = y, i.e., the betting
is called off unlessh = y. Under both interpretations the
net reward is the gamble

Ggjh(B j y) = ICy [�gjh(B j y)� ICB ]

onX , where

Cy = f(xo; : : : ; xN ) 2 X : (xm1
; : : : ; xm`

) = yg;

CB = f(xo; : : : ; xN ) 2 X : (xn1 ; : : : ; xnk ) 2 Bg;

and ICy and ICB are the indicator functions ofCy and
CB . By the Updating Principle[8], �gjh(B j y) should
have the same value under both interpretations.

Similarly to what we did before for�(fo;:::;fN ), we now re-
quire that all conditional possibility distribution functions
�gjh(� j y), y 2 Xh should be normal. On the updating
interpretation this requirement ensures that the new pos-
sibility distribution function�gjh(� j y) the subject would
adopt if he learned only thath assumes the valuey avoids
sure loss. Actually, as we already explained in the In-
troduction, normality of a distribution is a sufficient and
a necessary requirement for the corresponding possibility
measure to avoid sure loss, and to be coherent. Let us now
interpret�gjh(B j y), (B; y) 2 }(Xg)�Xh, as contingent
conditional possibilities. Suppose that�gjh(� j y) is not
normal for some valuey 2 Xh. Then any betICy [�� IX ]
against the sure eventXg contingent onh = y, at a rate�
such that�gjh(Xg j y) < � < 1, is acceptable. Whenh
assumes the valuey, such bet produces a sure loss of1��,
and otherwise it is called off. To avoid the acceptance of
such bets, we have to require again that all distributions
�gjh(� j y), y 2 Xh should be normal.

Assume that(g1; h1), : : : , (gs; hs) wheres 2 N n f0g are
couples of possibilistic variables that are determined in a
similar way as the possibilistic variables(g; h) above. We
have already argued why we want the possibility measures
�(fo;:::;fN ) and�gr jhr(� j y), y 2 Xhr , r 2 f1; : : : ; sg —
or the distributions�(fo;:::;fN ) and�grjhr (� j y), y 2 Xhr ,
r 2 f1; : : : ; sg — to be normal: this guarantees that
considered separately, these models avoid sure loss and
are coherent. We now introduce additional rationality re-
quirements to be imposed on�(fo;:::;fN ) and�grjhr(� j y),
y 2 Xhr , r 2 f1; : : : ; sg, which guarantee themutualcon-
sistency of these distributions [8].



First of all, �(fo;:::;fN ) and�gr jhr(� j y), y 2 Xhr , r 2
f1; : : : ; sg avoid sure lossif for all non-negative func-
tions � on }(X ) and for all non-negative functions�r,
r 2 f1; : : : ; sg on }(Xgr ) � Xhr , there is an element
x 2 X such thatX

A2}(X )

�(A)[�(fo;:::;fN )(A) � IA(x)]

+

sX
r=1

X
B2}(Xgr )
y2Xhr

�r(B; y)Ggr jhr (B j y)(x) � 0: (8)

Secondly,�(fo;:::;fN ) and �gr jhr(� j y), y 2 Xhr , r 2
f1; : : : ; sg are coherentif for all non-negative functions
� on }(X) and for all non-negative functions�r, r 2
f1; : : : ; sg on}(Xgr )�Xhr :

(i) for all C 2 }(X ), there is an elementx 2 X such
thatX

A2}(X )

�(A)[�(fo ;:::;fN )(A)� IA(x)]

+

sX
r=1

X
B2}(Xgr )
y2Xhr

�r(B; y)Ggrjhr(B j y)(x)

� �(fo;:::;fN )(C)� IC(x); (9)

(ii) for all (D; z) 2 }(Xgt)�Xht wheret 2 f1; : : : ; sg,
there is an elementx 2 X such thatX

A2}(X )

�(A)[�(fo ;:::;fN )(A)� IA(x)]

+
sX

r=1

X
B2}(Xgr )
y2Xhr

�r(B; y)Ggrjhr(B j y)(x)

� Ggtjht(D j z)(x): (10)

For the case of two variables, i.e.,N = 1, Walley and De
Cooman have proven the following result [9].

Theorem 3.1. Suppose that the conditioning rule satisfies
for all (xo; x1) 2 Xo �X1) the following condition:

�(fo;f1)(xo; x1) = 1) �f1jfo(x1 j xo) = 1: (11)

Then�(fo;f1) and�f1jfo(� j xo), xo 2 Xo avoid sure loss.
Provided the rule satisfies(11) and the analogous condi-
tion with xo andx1 interchanged,�(fo;f1), �f1jfo(� j xo),
xo 2 Xo, and�fojf1(� j x1), x1 2 X1 avoid sure loss.

Moreover, �(fo;f1) and �f1jfo(� j xo), xo 2 Xo are
coherent if and only if the conditional possibilities
�f1jfo(x1 j xo), (xo; x1) 2 Xo �X1 satisfy

DE�f1jfo(x1 j xo) � �f1jfo(x1 j xo) � NE�f1jfo(x1 j xo)
(12)

whenever�fo(xo) > 0.

As already explained in the Introduction, in (12)
NE�f1jfo(x1 j xo) denotes the value that is produced by the
technique of natural extension for the conditional possibil-
ity that f1 assumes the valuex1 given thatfo is equal to
xo.

Walley and De Cooman’s result can be generalised for a
finite number of possibilistic variablesfo; : : : ; fN , N 2
Nnf0g, provided that Dempster’s conditioning rule is used
to compute the conditional possibilities.

Theorem 3.2. The distributions �(fo;:::;fN ) and
DE�fn+1j(fo;:::;fn)(� j x), x 2 �

n
i=oXi,n 2 f0; : : : ; N�1g

are coherent. Moreover, if the possibilistic variables
fo; : : : ; fN satisfy the Markov condition, i.e., for all
x = (xo; : : : ; xn) 2 �n+1

i=o Xi and y 2 Xn+1 where
n 2 f0; : : : ; N � 1g:

DE�fn+1j(fo;:::;fn)(y j x) = DE�fn+1jfn(y j xn) (M 0)

whenever�(fo;:::;fn)(x) > 0, then �(fo;:::;fN ) and
DE�fn+kjfn(� j x), x 2 Xn, (n; k) 2 N � N n f0g such
that0 � n < n+ k � N are coherent.

Sketch of the proof.For the coherence of the model
formed by�(fo;:::;fN ) and DE�fn+1j(fo;:::;fn)(� j x), x 2
�n
i=oXi, n 2 f0; : : : ; N � 1g it is necessary and suffi-

cient that there is a non-empty classM of finitely additive
probability measures on}(X ) such that

(a) �(fo;:::;fN ) is the upper envelope ofM, i.e., for all
A 2 }(X ):

�(fo;:::;fN )(A) = supfP (A) j P 2Mg;

(b) for all n 2 f0; : : : ; N � 1g, for all x 2 �n
i=0Xi, and

for all A 2 }(Xn+1):

DE�fn+1j(fo;:::;fn)(A j x)

� supf
P (Cx;A)

P (Cx)
j P 2Mxg (13)

where

Cx = f(yo; : : : ; yN ) 2 X : (yo; : : : ; yn) = xg;

CA = f(yo; : : : ; yN ) 2 X : yn+1 2 Ag;

Cx;A = Cx \ CA;

Mx = fP j P 2M such thatP (Cx) > 0g;

and the equality in (13) holds whenever
�(fo;:::;fN )(X n Cx) < 1.

For the model formed by�(fo;:::;fN ) andDE�fn+kjfn(� j x),
x 2 Xn, (n; k) 2 N�N n f0g such that0 � n < n+ k �
N , a sufficient and necessary condition for coherence now
lies in the existence of a non-empty classM of finitely
additive probability measures on}(X ) such that:



(a) �(fo;:::;fN ) is the upper envelope ofM, i.e., for all
A 2 }(X ):

�(fo;:::;fN )(A) = supfP (A) j P 2Mg;

(b0) for all (n; k) 2 N�N nf0g such that0 � n < n+k �
N , for all x 2 Xn, for all A 2 }(Xn+k):

DE�fn+kjfn(A j x) � supf
P (Cx;A)

P (Cx)
j P 2Mxg

(14)

where

Cx = f(yo; : : : ; yN) 2 X : yn = xg;

CA = f(yo; : : : ; yN) 2 X : yn+k 2 Ag;

Cx;A = Cx \ CA;

Mx = fP j P 2M such thatP (Cx) > 0g;

and the equality in (14) holds whenever
�(fo;:::;fN )(X n Cx) < 1.

For the construction of a suitable collection of finitely ad-
ditive probability measures we need the following map-
pings.

For any elementn 2 f0; : : : ; N � 1g, let gn;n+1 be
the �n

i=0Xi � �n+1
i=0 Xi-mapping that assigns to an el-

ementx = (xo; : : : ; xn) of �n
i=0Xi an elementy =

(yo; : : : ; yn+1) of �n+1
i=0 Xi such that(

yi = xi; i 2 f0; : : : ; ng

�(fo;:::;fn+1)(y) = �(fo;:::;fn)(x):
(15)

Let us furthermore denote bygn;n the identical permuta-
tion of�n

i=0Xi, n 2 f0; : : : ; Ng. Using the equation

gk;n = gn�1;n Æ gk;n�1;

where(k; n) 2 N
2 such that0 � k < n � N , a class of

mappingsgk;n, (k; n) 2 N
2 such that0 � k � n � N

can recursively be generated such that

� for any couple(k; n) 2 N
2 such that0 � k � n � N

and for any elementx = (xo; : : : ; xk) 2 �
k
i=0Xi:(

gk;n(x)i = xi; i 2 f0; : : : ; kg

�(fo;:::;fn)(gk;n(x)) = �(fo;:::;fk)(x);

� for any triple(k; l; n) 2 N
3 such that0 � k � l � n:

gk;n = gl;n Æ gk;l:

Finally, consider an elementco of Xo such that�fo(co) =
1. Such an element can always be choosen since�fo is

assumed to be a normal possibility distribution function
on a finite set.

To each elementx = (xo; : : : ; xN ) 2 X we may assign
a finitely additive probability measurePx on}(X ) that is
uniquely determined by the following conditions:

� Px(fxg) = �(fo;:::;fN )(x);

� for all natural numbersk 2 f0; : : : ; N � 1g such that
�(fo;:::;fk)(xo; : : : ; xk) > �(fo;:::;fk+1)(xo; : : : ; xk+1):

Px(fgk;n(x0; : : : ; xk)g)

= �(fo;:::;fk)(xo; : : : ; xk)

� �(fo;:::;fk+1)(xo; : : : ; xk+1);

� Px(fg0;N(co)g) = 1� �fo(xo) if �fo(xo) < 1;

� Px(fyg) = 0 in any other elementy of X .

It can be shown that the classM = fPx j x 2 Xg
has properties(a) and(b). Consequently,�(fo;:::;fN ) and
DE�fn+1j(fo;:::;fn)(� j x), x 2 �n

i=oXi, n 2 f0; : : : ; N �
1g constitute a coherent model. When the variables
fo; : : : ; fN have the Markov property(M 0), thenM also
satisfies(b0). To see this, take into consideration that, for
any elementx = (xo; : : : ; xn) 2 �n

i=0Xi, the n + 2-
th component ofgn;n+1(x) only depends on then + 1-
th componentxn of the given elementx. This follows
from the normality of all conditional possibility distribu-
tion functions and the following formula that can now be
written down for the joint possibility distribution function
of the variablesfo; : : : ; fn, n 2 f0; : : : ; Ng:

�(fo;:::;fn)(x) = �fo(xo)

n�1Y
j=o

�fj+1jfj (xj+1 j xj)

wherex 2 �n
i=0Xi.

4 Conclusion

The results in this paper point towards two interesting con-
clusions. First of all, they show by means of a concrete
example that it is possible to work with imprecise prob-
abilities in modelling Markov processes. Secondly, they
indicate that the Dempster conditioning rule is of special
importance in a specifically possibilistic context, for two
reasons: (i) as Theorems 3.1 and 3.2 indicate, it is the most
specific (or least conservative, or most committal) condi-
tioning rule that is coherent in the context of possibilistic
Markov processes; and (ii) it is very easy to work with,
which makes a possibilistic theory of Markov processes
computationally tractable.
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