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Part I

General considerations about
probability
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Two kinds of probabilities

Aleatory probabilities
physical property, disposition
related to frequentist models
other names: objective, statistical or physical
probability, chance

Epistemic probabilities
model knowledge, information
represent strength of beliefs
other names: personal or subjective probability
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Examples

Weather forecast: probability of rain tomorrow
frequentist? physical?
personal probability of the forecaster, relating
strength of his belief in rain tomorrow, based on his
information =⇒ epistemic probability?

Laplace (1814): the probability that the sun won’t rise
tomorrow =

1
1826215

based on his ‘knowledge’: the sun has risen for
1826213 days since the day of Creation.

the distinction between aleatory–epistemic is present
in probability theory from its earliest beginnings
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Part II

Epistemic probability:
coherent lower previsions
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First observation

For many applications, we need theories to represent and
reason with certain and uncertain knowledge

certain → logic

uncertain → probability theory

One candidate: Bayesian theory of probability
I shall:

argue that it is not general enough

present the basic ideas behind a more general theory

imprecise probability theory (IP)
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A theory of epistemic probability

Three pillars:

how to measure epistemic probability?

by what rules does epistemic probability abide?

how can we use epistemic probability in reasoning,
decision making, statistics . . . ?

Notice that:
1 and 2 = knowledge representation

3 = reasoning, inference
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How to measure personal probability?

Introspection
difficulty: how to convey and compare strengths of
beliefs?
lack of a common standard

belief = inclination to act
beliefs lead to behaviour, that can be used to
measure their strength
special type of behaviour: accepting gambles
a gamble is a transaction/action/decision that
yields different outcomes (utilities) in different
states of the world.
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Gambles – 1

Consider a random variable X taking values in a set X

A gamble f is a bounded real-valued function on X

f : X → R : x 7→ f (x)

It can be interpreted as an uncertain reward
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Gambles – 2

Example: How did I come to Lugano?

The random variable X is my means of transportation:
by plane (X = p), by car (X = c) or by train (X = t)?

X = {p,c, t}

f (p) = −3, f (c) = 2, f (t) = 5

Whether your accept this gamble or not will depend on
your knowledge about how I came to Lugano

Denote your set of desirable gambles by

D ⊆ L (X )
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Modelling your uncertainty

Accepting a gamble
= taking a decision/action in the face of uncertainty

Your set of desirable gambles contains the gambles
that you accept

It is a model for your uncertainty about which value X
assumes (or will assume) in X

More common models
(lower and upper) previsions
(lower and upper) probabilities
preference orderings
probability orderings
sets of probabilities
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Desirability and rationality criteria

Rewards are expressed in units of a linear utility scale

Axioms: a set of desirable gambles D is coherent iff
D1. If f ≥ 0 then f ∈ D

D2. If f ,g ∈ D then f +g ∈ D

D3. If f ∈ D and λ ≥ 0 then λ f ∈ D

Consequence: If f ∈ D and g ≥ f then g ∈ D

Consequence: If f1, . . . , fn ∈ D and λ1, . . . , λn ≥ 0 then
∑n

k=1 λk fk ∈ D

A coherent set of desirable gambles is a convex cone
of gambles that contains all non-negative gambles.
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Definition of lower/upper prevision

Consider a gamble f on X

Buying f for a price µ yields a new gamble f −µ
the lower prevision P( f ) of f

= supremum acceptable price for buying f
= supremum p such that f −µ is desirable for all

µ < p

= sup{µ : f −µ ∈ D}

Selling f for a price µ yields a new gamble µ − f

the upper prevision P( f ) of f

= infimum acceptable price for selling f
= infimum p such that µ − f is desirable for all µ > p

= inf{µ : µ − f ∈ D}
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Lower and upper prevision – 1

Selling a gamble f for price µ
= buying − f for price −µ:

µ − f = (− f )− (−µ)

Consequently:

P( f ) = inf{µ : µ − f ∈ D}

= inf{−λ : − f −λ ∈ D}

= −sup{λ : − f −λ ∈ D}

= −P(− f )
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Lower and upper prevision – 2

P( f ) = sup{µ : f −µ ∈ D}

if you specify a lower prevision P( f ), you are
committed to accepting

f −P( f )+ ε = f − [P( f )− ε]

for all ε > 0 (but not necessarily for ε = 0).

P( f ) = inf{µ : µ − f ∈ D}

if you specify an upper prevision P( f ), you are
committed to accepting

P( f )− f + ε = [P( f )+ ε]− f

for all ε > 0 (but not necessarily for ε = 0).
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Precise previsions

When lower and upper prevision for f coincide:

P( f ) = P( f ) = P( f )

is called the (precise) prevision of f

P( f ) is a prevision, or fair price in de Finetti’s sense

Previsions are the precise, or Bayesian, probability
models

if you specify a prevision P( f ), you are committed to
accepting

[P( f )+ ε]− f and f − [P( f )− ε]

for all ε > 0 (but not necessarily for ε = 0).

Coherent lower and upper previsions – p.17/83



Precise previsions

When lower and upper prevision for f coincide:

P( f ) = P( f ) = P( f )

is called the (precise) prevision of f

P( f ) is a prevision, or fair price in de Finetti’s sense

Previsions are the precise, or Bayesian, probability
models

if you specify a prevision P( f ), you are committed to
accepting

[P( f )+ ε]− f and f − [P( f )− ε]

for all ε > 0 (but not necessarily for ε = 0).

Coherent lower and upper previsions – p.17/83



Allowing for indecision

P(X)p q

buy X for price p sell X for price q

a)

P(X)p q

buy X for price p sell X for price q

b) P(X)

×

Specifying a precise prevision P( f ) means that you
choose, for essentially any real price p, between
buying f for price p or selling f for that price

Imprecise models allow for indecision!
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Events and lower probabilities

An event A is a subset of X

Example: the event {c, t} that I did not come by plane
to Lugano.

It can be identied with a special gamble IA on X

IA(x) =

{

1 if x ∈ A, i.e., if A occurs
0 if x 6∈ A, i.e., if A doesn’t occur

The lower probability P(A) of A

= lower prevision P(IA) of indicator IA

= supremum rate for betting on A
= measure of evidence in favour of A
= measure of (strength of) belief in A

Coherent lower and upper previsions – p.19/83



Events and lower probabilities

An event A is a subset of X

Example: the event {c, t} that I did not come by plane
to Lugano.

It can be identied with a special gamble IA on X

IA(x) =

{

1 if x ∈ A, i.e., if A occurs
0 if x 6∈ A, i.e., if A doesn’t occur

The lower probability P(A) of A

= lower prevision P(IA) of indicator IA

= supremum rate for betting on A
= measure of evidence in favour of A
= measure of (strength of) belief in A

Coherent lower and upper previsions – p.19/83



Events and lower probabilities

An event A is a subset of X

Example: the event {c, t} that I did not come by plane
to Lugano.

It can be identied with a special gamble IA on X

IA(x) =

{

1 if x ∈ A, i.e., if A occurs
0 if x 6∈ A, i.e., if A doesn’t occur

The lower probability P(A) of A

= lower prevision P(IA) of indicator IA

= supremum rate for betting on A
= measure of evidence in favour of A
= measure of (strength of) belief in A

Coherent lower and upper previsions – p.19/83



Upper probabilities

The upper probability P(A) of A

= the upper prevision P(IA) = P(1− IAc) = 1−P(IAc) of
the indicator IA

= measures lack of evidence against A
= measures the plausibility of A

P(A) = 1−P(Ac)

This gives a behavioural interpretation to lower and
upper probability

evidence for A ↑ ⇒ P(A) ↑

evidence against A ↑ ⇒ P(A) ↓
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Precise probability

0 P(A) P(A) 1

s t

bets on A no bets bets against A

When P(A) = P(A) then the common value is called the
probability P(A) of A

Precise probability theory

is a special case of imprecise probability theory

makes much more stringent assumptions about a
subject’s behavioural dispositions
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Why imprecision?

A forced choice will not necessarily reflect your beliefs
or knowledge; it may be arbitrary

Choice is not the same as preference:
you may not have enough knowledge to really
prefer one action over another (e.g., betting on
vs. betting against A); you may be undecided
when forced to choose without a real preference,
you will make a choice, but this will not reflect your
beliefs, and it will in this sense be arbitrary

To enforce precision emphasises choice
To allow imprecision emphasises preference

You do not use a precise model automatically, but only
when you have sufficient information!
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Rules of epistemic probability

Lower and upper previsions represent commitments to
act/behave in certain ways

Rules that govern lower and upper previsions reflect
rationality of behaviour.

Your behaviour is considered to be irrational when
it is harmful to yourself : specifying betting rates
such that you lose utility, whatever the outcome
=⇒ avoiding sure loss (cf. logical consistency)
it is inconsistent : you are not fully aware of the
implications of your betting rates
=⇒ coherence (cf. logical closure)
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Avoiding sure loss

Example: two bets

on A: IA −P(A)

on Ac: IAc −P(Ac)

together: 1− [P(A)+P(Ac)] should be ≥ 0

Avoiding a sure loss therefore implies

P(A)+P(Ac) ≤ 1,

or in other words

P(A) ≤ P(A)
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Avoiding sure loss: general condition

A set of gambles K and a lower prevision P defined for
each gamble in K .
Definition1. P avoids sure loss if for all n ≥ 0, f1, . . . , fn in K

and for all non-negative λ1, . . . , λn:

sup
x∈X

[

n

∑
k=1

λk[ fk(x)−P( fk)]

]

≥ 0.

If not, then there are ε > 0, n ≥ 0, f1, . . . , fn and
non-negative λ1, . . . , λn such that:

n

∑
k=1

λk[ fk −P( fk)+ ε] ≤−ε!
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A few consequences of avoiding sure loss

a. P( /0) ≤ 0 and P(X ) ≥ 1

b. A ⊆ B ⇒ P(A) ≤ P(B)

c. P( f ) ≤ sup f , P( f ) ≥ inf f and P( f ) ≤ P( f )

d. P(µ) ≤ µ ≤ P(µ)

e. P( f )+P(µ − f ) ≤ µ

f. if f ≥ g+ µ then P( f ) ≥ P(g)+ µ

g. P( f +g) ≤ P( f )+P(g) and P( f +g) ≥ P( f )+P(g)

h. P(λ f ) ≤ λP( f ) and P(λ f ) ≥ λP( f ) for λ ≥ 0

whenever the arguments are in the domains of P (or P).
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Coherence

Example: two bets involving A and B with A∩B = /0

on A: IA −P(A)

on B: IB −P(B)

together: IA∪B − [P(A)+P(B)]

Coherence implies that

P(A)+P(B) ≤ P(A∪B)
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Coherence: general condition

A set of gambles K and a lower prevision P defined for
each gamble in K .

Definition2. P is coherent if for all n ≥ 0, f0, f1, . . . , fn in K

and for all non-negative λ0, λ1, . . . , λn:

sup
x∈X

[

n

∑
k=1

λk[ fk(x)−P( fk)]−λ0[ f0 −P( f0)]

]

≥ 0.

If not, then there are ε > 0, n ≥ 0, f0, f1, . . . , fn and
non-negative λ1, . . . , λn such that:

f0(x)− [P( f0)+ ε] ≥
n

∑
k=1

λk[ fk −P( fk)+ ε]!
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A few consequences of coherence – 1

Whenever the arguments are in the domains of P (or P):

a. P( /0) = P( /0) = 0 and P(X ) = P(X ) = 1

b. if A ⊆ B then P(A) ≤ P(B) and P(A) ≤ P(B)

c. inf f ≤ P( f ) ≤ P( f ) ≤ sup f

d. P(µ) = P(µ) = µ

e. P( f + µ) = P( f )+ µ and P( f + µ) = P( f )+ µ

f. if f ≥ g+ µ then P( f ) ≥ P(g)+ µ and P( f ) ≥ P(g)+ µ

g. P( f )+P(g) ≤ P( f +g) ≤ P( f )+P(g) ≤ P( f +g) ≤

P( f )+P(g)

h. P(λ f ) = λP( f ) and P(λ f ) = λP( f ) for λ ≥ 0
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A few consequences of coherence – 2

Whenever the arguments are in the domains of P (or P):

a. P( f ) ≤ P(| f |) and P( f ) ≤ P(| f |)

b. |P( f )−P(g)| ≤ P(| f −g|) and |P( f )−P(g)| ≤ P(| f −g|)

c. if P(| fn − f |) → 0 as n → ∞ then P( fn) → P( f ) and
P( fn) → P( f )

Important consequences of c.:

if fn → f uniformly (i.e., sup| fn − f | → 0) then
P( fn) → P( f ) and P( fn) → P( f )

every gamble f is a uniform limit of a sequence of
simple gambles sn, and

P( f ) = lim
n→∞

P(sn) and P( f ) = lim
n→∞

P(sn)
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Important remarks

The domain K of a lower prevision
is the set of those gambles for which lower
prevision assessments are available
need not have any predefined structure
may contain (indicators of) events

a convex combination of coherent lower previsions is
coherent

a lower envelope of coherent lower previsions is
coherent

a point-wise limit (inferior) of coherent lower previsions
is coherent
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Important remarks

The domain K of a lower prevision
is the set of those gambles for which lower
prevision assessments are available
need not have any predefined structure
may contain (indicators of) events

a convex combination of coherent lower previsions is
coherent

a lower envelope of coherent lower previsions is
coherent

a point-wise limit (inferior) of coherent lower previsions
is coherent

Coherent lower and upper previsions – p.31/83



Coherence on a linear space

Suppose that the domain K is a linear space:

if f ∈ K and g ∈ K then f +g ∈ K

if f ∈ K and λ ∈ R then λ f ∈ K .

Theorem 1. .Let the lower prevision P be defined on a linear
space K . Then P is coherent if and only if for all f ,g in K and
λ ≥ 0,

P1. P( f ) ≥ inf f [accepting sure gains]

P2. P(λ f ) = λP( f ) [positive homogeneity]

P3. P( f +g) ≥ P( f )+P(g) [superlinearity]
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Precise previsions – 1

Consider a domain K ′, a lower prevision P and a conjugate
upper prevision P that coincide on K ′:

P( f ) = P( f ) = P( f ), ∀ f ∈ K
′

There is a unique way to extend this to a functional P on

K = K
′∪−K

′, whence K = −K ,

that is self-conjugate:

P( f ) = −P(− f ), ∀ f ∈ K .
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Precise and linear previsions

Definition3. .

1. A self-conjugate P on a negation-invariant domain
K = −K is called a precise prevision. It is interpreted as a
fair price.

2. A (precise) prevision is called coherent when it is coherent
both as a lower and as an upper prevision.

3. We also call a coherent precise prevision a linear prevision.

coincides with de Finetti’s notion of a coherent
prevision

lineair previsions are the coherent precise probability
models
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Linear previsions

a precise prevision P on L (X ) is coherent iff
P(λ f + µg) = λP( f )+ µP(g)

if f ≥ 0 then P( f ) ≥ 0

P(X ) = 1

restriction to (indicators of) events is a finitely additive
probability measure

Let P denote the set of all linear previsions on L (X )
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Linear previsions: basic results

Theorem 2. .Let P be a precise prevision on a linear space K of
gambles. Then P is coherent (is a linear prevision) if and only if
for all f and g in K and λ ∈ R:

LP1. P( f ) ≥ inf f

LP2. P( f +g) = P( f )+P(g)

LP3. P(λ f ) = λP( f ).

For precise previsions, coherence and avoiding sure loss
coincide!
Theorem 3. .A precise prevision P on L (X ) is coherent if and
only if it avoids sure loss.
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Linear previsions: mass functions

Assume that X is finite and consider a linear prevision
P on L (X )

P is completely determined by its (probability) mass
function

p(x) = P({x}) = P(I{x}), ∀x ∈ X

where
p(x) ≥ 0 and ∑

x∈X

p(x) = 1

and
P( f ) = ∑

x∈X

p(x) f (x).
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Sets of linear previsions

Consider a lower prevision P on a set of gambles K

Let M (P) be the set of linear previsions on L (X ) that
dominate P on its domain K :

M (P) = {Q ∈ P : (∀ f ∈ K )(Q( f ) ≥ P( f ))} .

Then avoiding sure loss is equivalent to M (P) 6= /0.

and coherence is equivalent to:

P( f ) = min{Q( f ) : Q ∈ M (P)} , ∀ f ∈ K .

A lower envelope of a set of precise previsions is
always a coherent lower prevision
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Coherent lower/upper previsions – 1

probability measures, previsions à la de Finetti

2-monotone capacities, Choquet capacities

contamination models

possibility and necessity measures

belief and plausibility functions

random set models
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Coherent lower/upper previsions – 2

reachable probability intervals

lower and upper mass/density functions

lower and upper cumulative distributions (p-boxes)

(lower and upper envelopes of) credal sets

distributions (Gaussian, Poisson, Dirichlet, multinomial,
. . . ) with interval-valued parameters

robust Bayesian models

. . .
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Natural extension

Third step toward a scientific theory

= how to make the theory useful

= use the assessments to draw conclusions about other
things [(conditional) events, gambles, . . . ]

Problem: extend a coherent lower prevision defined on a
collection of gambles to a lower prevision on all gambles
(conditional events, gambles, . . . )

Requirements:

coherence

as low as possible (conservative, least-committal)

= NATURAL EXTENSION
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Natural extension: an example – 1

Lower probabilities P(A) and P(B) for two events A and B
that are logically independent:

A∩B 6= /0 A∩Bc 6= /0 Ac ∩B 6= /0 Ac ∩Bc 6= /0

For all λ ≥ 0 and µ ≥ 0, you accept to buy any gamble f for
price α if for all x

f (x)−α ≥ λ [IA(x)−P(A)]+ µ [IB(x)−P(B)]

The natural extension E( f ) of the assessments P(A) and
P(B) to any gamble f is the highest α such that this
inequality holds, over all possible choices of λ and µ.
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Natural extension: an example – 2

Calculate E(A∪B): maximise α subject to the constraints:
λ ≥ 0, µ ≥ 0, and for all x:

IA∪B(x)−α ≥ λ [IA(x)−P(A)]+ µ[IB(x)−P(B)]

or equivalently:

IA∪B(x) ≥ λ IA(x)+ µIB(x)+ [α −λP(A)−µP(B)]

and if we put γ = α −λP(A)−µP(B) this is equivalent to
maximising

γ +λP(A)+ µP(B)

subject to the inequalities

1 ≥ λ + µ + γ, 1 ≥ λ + γ, 1 ≥ µ + γ, 0 ≥ γ
λ ≥ 0, µ ≥ 0
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Natural extension: an example – 3

This is a linear programming problem, and its solution is
easily seen to be:

E(A∪B) = max{P(A),P(B)}

Similarly, for f = IA∩B we get another linear programming
problem that yields

E(A∩B) = max{0,P(A)+P(B)−1}

These are the Fréchet bounds!

Natural extension always
gives the most conservative values that are still compatible
with coherence and other additional assumptions made . . .
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Another example: set information

Information: X assumes a value in a subset A of X

This information is represented by the vacuous lower
prevision relative to A:

PA( f ) = inf
x∈A

f (x); f ∈ L (X )

P ∈ M (PA) iff P(A) = 1

PA is the natural extension of the precise probability
assessment ‘P(A) = 1’; also of the belief function with
probability mass one on A

Take any P such that P(A) = 1, then P( f ) is only
determined up to an interval [PA( f ),PA( f )] according to
de Finetti’s fundamental theorem of probability
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Natural extension: general definition

Definition4. .Consider a lower prevision P on a set of gambles
K . The natural extension E of P is a lower prevision defined on
the set L (X ) of all gambles:

E( f ) = sup
n≥0

fk∈K ,λk≥0
k=1,...,n

sup

{

α : f −α ≥
n

∑
k=1

λk[ fk −P( fk)]

}

for all f ∈ L (X )

Coherent lower and upper previsions – p.46/83



Natural extension theorem

Theorem 4. .Consider a lower prevision P on a set of gambles
K that avoids sure loss. Then its natural extension E has the
following properties:

a. inf f ≤ E( f ) ≤ sup f

b. E is a coherent lower prevision on L (X )

c. E dominates P on K : E( f ) ≥ P( f ) for all f in K

d. E agrees with P on K if and only if P is coherent

e. E is the smallest coherent lower prevision on L (X ) that
dominates P on K

f. if P is coherent then E is the smallest coherent extension of P
to L (X )
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Natural extension: sets of previsions

Consider a lower prevision P on a set of gambles K

If it avoids sure loss then M (P) 6= /0 and its natural
extension is given by the lower envelope of M (P):

E( f ) = min{Q( f ) : Q ∈ M (P)} , ∀ f ∈ L (X )

P is coherent iff it coincides on its domain K with its
natural extension

M (P) = M (E)
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Natural extension: desirable gambles

Consider a set D of gambles you have judged desirable.

What are the implications of these assessments for the
desirability of other gambles?

The natural extension E of D is the smallest coherent
set of desirable gambles that includes D

It is the smallest extension of D to a convex cone of
gambles that contains all non-negative gambles.

Coherent lower and upper previsions – p.49/83
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Natural extension: special cases

Natural extension is a very powerful reasoning method. In
special cases it reduces to:

logical deduction

belief functions via random sets

fundamental theorem of probability/prevision

Lebesgue integration of a probability measure

Choquet integration of 2-monotone lower probabilities

Bayes’ rule for probability measures

Bayesian updating of lower/upper probabilities

robust Bayesian analysis

first-order model from higher-order model
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Three pillars

1. behavioural definition of lower/upper previsions that
can be made operational

2. rationality criteria of
avoiding sure loss
coherence

3. natural extension to make the theory useful
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Gambles and events – 1

How to represent: event A is at least n times as
probable as event B

Set of precise previsions M :

P ∈ M ⇔ P(A) ≥ nP(B) ⇔ P(IA −nIB) ≥ 0

lower previsions: P(IA −nIB) ≥ 0

sets of desirable gambles: IA −nIB + ε ∈ D , ∀ε > 0.

IA −nIB is a gamble, generally not an indicator!

Cannot be expressed by lower probabilities:
{

P(A) ≥ P(B), P(A) ≥ P(B) too weak
P(A) ≥ P(B) too strong
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Gambles and events – 2

Did I come to Lugano by plane, by car or by train?

Assessments:
‘not by plane’ is at least as probable as ‘by plane’
‘by plane’ is at least a probable as ‘by train’
‘by train’ is at least a probable as ‘by car’

Convex set M of probability mass functions m on
{p, t,c} such that

m(p) ≤
1
2
, m(p) ≥ m(t), m(t) ≥ m(c)

M is a convex set with extreme points

(
1
2
,
1
2
,0), (

1
2
,
1
4
,
1
4
), (

1
3
,
1
3
,
1
3
)

Coherent lower and upper previsions – p.53/83



Gambles and events – 2

Did I come to Lugano by plane, by car or by train?

Assessments:
‘not by plane’ is at least as probable as ‘by plane’
‘by plane’ is at least a probable as ‘by train’
‘by train’ is at least a probable as ‘by car’

Convex set M of probability mass functions m on
{p, t,c} such that

m(p) ≤
1
2
, m(p) ≥ m(t), m(t) ≥ m(c)

M is a convex set with extreme points

(
1
2
,
1
2
,0), (

1
2
,
1
4
,
1
4
), (

1
3
,
1
3
,
1
3
)

Coherent lower and upper previsions – p.53/83



Gambles and events – 2

Did I come to Lugano by plane, by car or by train?

Assessments:
‘not by plane’ is at least as probable as ‘by plane’
‘by plane’ is at least a probable as ‘by train’
‘by train’ is at least a probable as ‘by car’

Convex set M of probability mass functions m on
{p, t,c} such that

m(p) ≤
1
2
, m(p) ≥ m(t), m(t) ≥ m(c)

M is a convex set with extreme points

(
1
2
,
1
2
,0), (

1
2
,
1
4
,
1
4
), (

1
3
,
1
3
,
1
3
)

Coherent lower and upper previsions – p.53/83



Gambles and events – 3

the natural extension E is the lower envelope of this set

E( f ) = min
m∈M

[m(p) f (p)+m(t) f (t)+m(c) f (c)]

The lower probabilities are completely specified by

E({p}) =
1
3

E({p}) =
1
2

E({t}) =
1
4

E({t}) =
1
2

E({c}) = 0 E({c}) =
1
3
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Gambles and events – 4

the corresponding set of mass functions M ∗ is a
convex set with extreme points

(
1
2
,
1
2
,0), (

1
2
,
1
4
,
1
4
), (

1
3
,
1
3
,
1
3
)

(
5
12

,
1
4
,
1
3
), (

1
3
,
1
2
,
1
6
)

M is more informative than M ∗: M ⊂ M ∗

with M we can infer that E(I{p}− I{t}) ≥ 0: ‘by plane’ is
at least as probable as ‘by train’

with M ∗ this inference cannot be made: we lose
information by restricting ourselves to lower
probabilities
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Gambles and events – 5

event A ⇔ gamble IA

lower probability P(A) ⇔ lower prevision P(IA)

In precise probability theory:
→ events are as expressive as gambles

In imprecise probability theory:
→ events are less expressive than gambles
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And by the way

There is a natural embedding of classical propositional logic
into imprecise probability theory.

set of propositions → lower probability
logically consistent → ASL
deductively closed → coherent
deductive closure → natural extension

maximal deductively closed → probability

No such embedding exists into precise probability theory.
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Part III

Decision making
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Decision making – 1

Consider an action a whose outcome (reward) depends on
the actual value of X .
With such an action we can associate a reward function

fa : X → R : x 7→ fa(x)

When do you strictly prefer action a over action b:

a > b ⇔ P( fa − fb) > 0

You almost-prefer a over b if

a ≥ b ⇔ P( fa − fb) ≥ 0

We identify an action a with its reward function fa
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Decision making – 2

You are indifferent between a and b if

a ≈ b ⇔ a ≥ b and b ≥ a ⇔ P( fa − fb) = P( fa − fb) = 0

Actions a and b are incomparable if

a‖b ⇔ a 6> b and b 6> a and a 6≈ b

In that case there is not enough information in the
model to choose between a and b: you are undecided!

Imprecise probability models allow for indecision!

In fact, modelling and allowing for indecision is one of
the motivations for introducing imprecise probabilities
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Decision making: maximal actions

Consider a set of actions A and reward functions
K = { fa : a ∈ A}

Due to the fact that certain actions may be
incomparable, the actions cannot be linearly ordered,
only partially!
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Ordering of actions
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Ordering of actions
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Decision making: maximal actions

The maximal actions a in A are actions that are
undominated in A:

(∀b ∈ A)(b 6> a)

or equivalently

(∀b ∈ A)(P( fa − fb) ≥ 0)

Any two maximal actions are either indifferent or
incomparable!
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Decision making: the precise case

a > b ⇔ P( fa − fb) > 0 ⇔ P( fa) > P( fb)

a ≥ b ⇔ P( fa − fb) ≥ 0 ⇔ P( fa) ≥ P( fb)

a ≈ b ⇔ P( fa) = P( fb)

never a‖b!

There is no indecision in precise probability models

Whatever the available information, they always allow
you a best choice between two available actions!

Actions can always be ordered linearly, maximal
actions are unique (up to indifference): they have the
highest expected utility.
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Decision making: sets of previsions

a > b ⇔ (∀P ∈ M (P))(P( fa) > P( fb))

a ≥ b ⇔ (∀P ∈ M (P))(P( fa) ≥ P( fb))

a ≈ b ⇔ (∀P ∈ M (P))(P( fa) = P( fb))

a‖b ⇔ (∃P ∈ M (P))(P( fa) < P( fb))
and (∃Q ∈ M (P))(Q( fa) > Q( fb))

If K is convex then a is maximal if and only if there is
some P ∈ M (P) such that

(∀b ∈ A)(P( fa) ≥ P( fb))
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Part IV

Conditional lower previsions
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Joint lower previsions

Consider another random variable Y assuming values
in a set Y .

(X ,Y ) assumes values in X ×Y

Assume X and Y are finite

Assume logical independence of X and Y

A joint lower prevision P on L (X ×Y ) models beliefs
about the value that X and Y assume jointly in X ×Y
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Joint linear previsions

Example: A linear prevision P on L (X ×Y ) is completely
determined by its (probability) mass function

p(x,y) = P({(x,y)}) = P(I{(x,y)}), ∀(x,y) ∈ X ×Y

where
p(x,y) ≥ 0 and ∑

(x,y)∈X ×Y

p(x,y) = 1

and for all gambles h : X ×Y → R

P(h) = ∑
(x,y)∈X ×Y

p(x,y)h(x,y).
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Marginal lower previsions

Assume you have a joint lower prevision P on
L (X ×Y )

You want to infer a model for the beliefs about the
value that Y assumes in Y , irrespective of the value
that X assumes in X

Marginal lower prevision PY on L (Y ):

PY (g) = P(g′) for all g in L (Y )

where

g′(x,y) = g(y) for all x in X and y in Y

we shall identify g and g′ and simply write PY (g) = P(g).
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Marginal linear previsions

Example: If P is a linear prevision on L (X ×Y ), then its
Y -marginal PY is a linear prevision on L (Y ), completely
determined by its marginal mass function

pY (y) = PY ({y}) = PY (I{y}), ∀y ∈ Y

where
pY (y) = ∑

x∈X

p(x,y)

and for all gambles g : Y → R

PY (g) = ∑
y∈Y

pY (y)g(y).
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Conditional lower previsions

Consider a gamble h on X ×Y and a value y ∈ Y

Conditional lower prevision P(h|Y = y) = P(h|y) is the
supremum price for buying h if the subject knew that
Y = y.

For each y in Y , a value P(h|y), summarised by P(h|Y )

P(h|Y ) : Y → R : y 7→ P(h|y)

P(·|Y ) is a two-place function on L (X ×Y )×Y with
partial maps

P(h|Y ) : Y → R : y 7→ P(h|y)

P(·|y) : L (X ×Y ) → R : h 7→ P(h|y)
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Separate coherence

Rationality criteria to be imposed on P(·|Y ) alone
for each y in Y , P(·|y) should be a coherent lower
prevision on L (X ×Y )

for each y in Y , P({y}|Y = y) = P(IX ×{y}|y) = 1

Separate coherence of P(·|Y )

Immediate consequence:

P(h|y) = P(h(·,y)|y)

P(·|y) is completely determined by its values on L (X ):

h(·,y) = h′(·,y) ⇒ P(h|y) = P(h′|y)
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Joint coherence

Assume that we have
a coherent joint lower prevision P on L (X ×Y )

a separately coherent conditional lower prevision
P(·|Y ) on L (X ) (or equivalently on L (X ×Y ))

Then P and P(·|Y ) should satisfy the rationality criterion
of joint coherence:

P
(

IX ×{y}[h−P(h|y)]
)

= 0 for all y ∈ Y , h ∈ L (X ×Y )

(GBR)

This criterion is also called the Generalized Bayes Rule
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Joint coherence for linear previsions

If the joint lower prevision is a linear prevision P, the
GBR becomes

P(hIX ×{y}) = P(h|y)P(X ×{y})

or equivalently,

P(h|y) =
P(hIX ×{y})

P(X ×{y})
if P(X ×{y}) = PY ({y}) > 0

This is Bayes’ rule, and P(·|y) is a precise prevision
with mass function

p(x|y) =
p(x,y)
pY (y)

if pY (y) > 0
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Generalised Bayes Rule

If PY ({y}) = P(X ×{y}) > 0 then coherence implies
that P(h|y) is the unique solution of the following
equation in µ:

P
(

IX ×{y}[h−µ]
)

= 0 (Generalised Bayes Rule)

Observe that also (divisive conditioning)

P(h|y) = inf

{

Q(hIX ×{y})

Q(X ×{y})
: Q ∈ M (P)

}

= inf{Q(h|y) : Q ∈ M (P)}
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Regular extension

If PY ({y}) = 0 but PY ({y}) > 0 then one often considers
the so-called regular extension R(h|y): it is the greatest
µ such that

P(IX ×{y}[h−µ]) ≥ 0

Observe that also

R(h|y) = inf{Q(h|y) : Q ∈ M (P) and Q(X ×{y}) > 0}

Regular extension is the most conservative coherent
extension that satisfies an additional regularity
condition
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Marginal extension

Let PY be a coherent (marginal) lower prevision
defined on some subset K of L (Y ) and let EY be its
natural extension to L (Y ).

Let P(·|Y ) be a separately coherent conditional lower
prevision on some subset H of L (X ), and let E(·|y)
be the natural extension of P(·|y) to L (X ), y ∈ Y .

Theorem 5 (Marginal extension theorem). .The smallest
coherent joint lower prevision E on L (X ×Y ) whose
Y -marginal coincides with PY on K and that is jointly coherent
with P(·|Y ), is given by

E(h) = EY (E(h|Y ))

for all gambles h on X ×Y .
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Marginal extension: linear previsions

If P(·|Y ) is precise, then the marginal extension E is
uniquely coherent

let P(·|Y ) be precise on L (X ) and PY be precise on
L (Y ), then the marginal extension E is precise and
uniquely coherent, and given by

E(h) = PY (P(h|Y ))

or in terms of mass functions

p(x,y) = pY (y)p(x|y)

Coherent lower and upper previsions – p.78/83



Marginal extension: sets of linear previsions

Consider PY on K ⊆ L (Y ) and P(·|Y ) on H ⊆ L (X )

The marginal extension E is the lower envelope of the
set of linear previsions

QY (Q(·|Y )) (= marginal extension of QY and Q(·|Y ))

where
QY is any element of M (PY )

Q(·|y) is any element of M (P(·|y)) for all y in Y

we may also restrict ourselves to sets of extreme points
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Epistemic irrelevance and independence

Y is (epistemically) irrelevant to X if additional
knowledge about the value of Y does not change our
beliefs about the value of X :

P( f |y) = PX( f )

for gambles f on X and all y ∈ Y

X is (epistemically) irrelevant to Y :

P(g|x) = PY (g)

for gambles g on Y and all x ∈ X

X and Y are epistemically independent if Y is irrelevant
to X and the other way round.

Coherent lower and upper previsions – p.80/83



Products – 1

Consider a coherent marginal lower prevision PX on
K ⊆ L (X )

Consider a coherent marginal lower prevision PY on
H ⊆ L (Y )

a coherent product of PX and PY is any coherent lower
prevision on L (X ×Y ) whose X -marginal coincides
with PX on K and whose Y -marginal coincides with
PY on H
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Products – 2

With increasing precision:

natural extension: smallest coherent product of PX and
PY

irrelevant natural extension: smallest coherent product
of PX and PY such that X is epistemically irrelevant to Y

independent natural extension: smallest coherent
product of PX and PY such that X and Y are
epistemically independent

type-I product: lower envelope of the products of the
linear previsions in M (PX) with the linear previsions in
M (PY )
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Questions

?
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