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Outline

Introduction to Bayesian networks.

Learning parameters.

Learning interval probabilities.

Learning the structure.

Application of an imprecise score.
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Bayesian Networks

For problems in which we have a set of variables, X = {X1, . . . ,Xn}.
A Bayesian Network has two parts

Qualitative: a directed acyclic graph

A node for each problem variable

A set of arcs non producing directed cycles.

YES NO

Quantitative: a set of conditinal probability distributions (one for each
variable conditioned to its parents).
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Bayesian Networks

Descend.

X

Parents Children
Ancest.
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Basic Independences
Each node is independent of its non-descendants given its
parents.

X

Parents Descendants
Node No descendants
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Additional Independence: D-separation

X is independent of Y given Z1, . . . ,Zk if any path (using arcs in
both directions) between X and Y is blocked in some node by
observations Z1, . . . ,Zk.
Two ways of blocking:

X Y X
Y

non head−to−head

Observed

Non−observed

Head−to−head

non observed
Descendants
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Head-to-head

Head-to-head

X

Non head-to-head

X

X

X
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Independence Examples

Observed Node

Examined variables

Rest of variables
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Independence Examples

Observed Node

Examined variables

Rest of variables

× ×

First path blocked
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Independence Examples

Observed Node

Examined variables

Rest of variables

× ×
×

Second path blocked
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Independence Examples

Observed Node

Examined variables

Rest of variables

×
××

Third path blocked
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Independence Examples

Observed Node

Examined variables

Rest of variables

×
×

×

Forth path blocked
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Independence Examples

Observed Node

Examined variables

Rest of variables

Independent Variables (Non obs.)
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Independence Examples

Observed Node

Tested variables

Rest of variables
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Independence Examples

Observed Node

Tested variables

Rest of variables

First path NON blocked
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Independence Examples

Observed Node

Tested variables

Rest of variables

Dependent variables (Red obs.)
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Independence Examples
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Independence Examples
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Independence Examples

Observed Node

Tested variables

Rest of variables

×

First path blocked
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Independence Examples

Observed Node

Tested variables

Rest of variables

Second path NO blocked
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Independence Examples

Observed Node

Tested variables

Rest of variables

Learning Credal Networks – p.13



Independence Examples

Observed Node

Tested variables

Rest of variables

×

First path blocked

Learning Credal Networks – p.13



Independence Examples

Observed Node

Tested variables

Rest of variables

×

Second path blocked

Learning Credal Networks – p.13



Independence Examples

Observed Node
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Rest of variables
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Independence Examples

Observed Node

Tested variables

Rest of variables

Independent Variables (Red obs.)
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Asia Network

Asia

Tuberculosis

Tuberc. or
Lung Cancer

X-Ray

Smoking

Lung Cancer

Bronchitis

DyspnoeaCough
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3 Variables Examples

Age

Income

Restaurant

Age

Income

Car

Age Gender

Income
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Decomposition Theorem

Given a Bayesian network with variables X, then we can have
the following decomposition of the joint probability distribution:

p(x) = ∏
y∈x

p(y|pa(y))

where pa(Y ) is the set of parents of variable Y .
Consequence: To specify a joint probability distribution we only
have to give a conditional probability distribution for each node
given its parents.

In the case of a root node, we give its marginal distribution.
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Example

A B C D

E F G

H I

p(a,b,c,d,e, f ,g,h, i) =

p(a).p(b).p(c).p(d).p(e|a).p( f |b,c).p(g|c,d).p(h|b,e).p(i|c,d, f )
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Learning

Learning in Bayesian networks can be defined as the process
of inducing a model from a database.

X1 X2 . . . Xn

x1
1 x1

2 . . . x1
n

x2
1 x2

2 . . . x2
n

x3
1 x3

2 . . . x3
n

x4
1 x4

2 . . . x4
n

X1 X2

X3

Xn

Learning = Inducing a graph + Estimating parameters
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Motivation

Building probabilistic networks from experts can be difficult

Difficulties of experts to know the meaning of probability and
dependence graphs

Very large domains. Only groups of experts can cover it.

Expensive and time consuming.

No expert knowledge available: we want to discover

Learning with Bayesian networks offers a wide range of possibilities

It can integrate expert knowledge when available

It can be classification oriented

It is possible to discover causality

It is cheap
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Modalities

Known structure

X1 X2 . . . Xn

x1
1 x1

2 . . . x1
n

x2
1 x2

2 . . . x2
n

x3
1 x3

2 . . . x3
n

x4
1 x4

2 . . . x4
n

X1 X2

X3

Xn

p(x2|x1), p(x3|x1), p(xn|x2,x3)

Learning Credal Networks – p.20



Modalities

Unknown structure

X1 X2 . . . Xn

x1
1 x1

2 . . . x1
n

x2
1 x2

2 . . . x2
n

x3
1 x3
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x4
1 x4
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X3

Xn
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Modalities: Partial Knowledge

We know the presence (absence) of links

We know a partial order relation: X1 goes before Xn or X1

can not be a descendant of Xn.

We know some independence relationships (or that some
independence relationships are not true).

We know an ’a priori’ probability distribution on the set of
possible graphs.
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Restricted Set of Structures

Tree
One node, at
most, one parent.

Hipertree
No undirected cy-
cles (loops).

Simple
Graphs
Every loop has, at
least to head to
head nodes.
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Incomplete Data
Incomplete data when using a Bayesian network is not a
problem (Think in classical models when data are missing).

Incomplete data when learning makes everything more difficult
(there is an important hypothesis that is not verified in that
case), even with Missing at Random hypothesis.
We can have the two modalities: estimating parameters or
estimating parameters and structure.

X1 X2 . . . Xn

? x1
2 . . . x1

n

x2
1 ? . . . ?

x3
1 ? . . . x3

n

x4
1 x4

2 . . . x4
n
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The Supervised Classification Problem

We assume a set of variables or attributes X = (X1, . . . ,Xn).
Each variable Xi will take values on a finite set UXi.
We have a class variable C, with values in UC.
We have a database of values for these variables:

X1 X2 . . . Xn C

x1
1 x1

2 . . . x1
n c1

x2
1 x2

2 . . . x2
n c2

x3
1 x3

2 . . . x3
n c3

x4
1 x4

2 . . . x4
n c4

We want to induce a model M such that if x is a value of X.

x M c ∈ΩC
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Naïve Bayes Classifiers

Predictive variables are conditionally independent given the
variable class

C

X1 X2 X3 X4 Xn

The joint probability factorizes as:

P(C = c).
n

∏
i=1

P(Xi = xi|C = c)
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Estimating Parameters: Bayesian Approach

Bayesian Network Representation

X1 X2 X3 X4 XN

X

θ

θ

XN+1

We have an ’a priori’ information about the parameter.
All the conditional distributions are the same.
We assume that we have observed x1, . . . ,xN and we want to
compute the conditional information about XN+1.
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Estimating Parameters: Bayesian Approach

Bayesian Network Representation

X1 X2 X3 X4 XN X

θ θ

XN+1

We have an ’a priori’ information about the parameter.
All the conditional distributions are the same.
We assume that we have observed x1, . . . ,xN and we want to
compute the conditional information about XN+1.
We assume that θ follows a Dirichlet distribution, and then we
compute the ’a posteriori’ expectation of the parameter given
the sample
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Example

Imagine that we have an urn with balls of different colors: red
(R), blue (B), and green (G); but on an unknown quantity.

Assume that we picked up balls with replacement, with the
following sequence: (B,B,R,R,B).

If we assume a Dirichlet ’a priori’ distribution with parameters:
D(1,1,1), then the estimated frequencies for red, blue, and
green are:
(3/8,4/8,1/8)

Observe, as green has a positive probability, even it never ap-

pears in the sequence.
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A Bayesian Network

The basic approach is to apply the Bayesian approach
with Dirichlet ’a priori’ distributions for each conditional
probability distribution.

In each case, we should only consider the part of the
database that is compatible with the values of the parents
to which we are conditioning.

We have to be conscious of the basic hypothesis allowing
us to do it, and when it does not make sense to apply
them.

We can have problems when selecting the equivalent
sample size of the Dirichlet distributions.
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Parametrization

For each variable Xi let x1
i , . . . ,x

ri
i the set of possible values

where ri is the number of possible values.

The number of configurations for the parents of Xi will be
denoted by qi. The configuration number j will be denoted
by pai

j.

The parameters necessary to specify a Bayesian network
are
θi jk = P(xk

i |pai
j), i = 1, . . . ,n, j = 1, . . . ,qi, k = 1, . . . ,ri

θi j will denote the vector of multinomial probabilities
(θi j1, . . . ,θi jri).
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Example

Assume the following network where all the variables are
binary

X1 X2

X3

θ111 = P(X1 = 0)

θ112 = P(X1 = 1)

θ211 = P(X2 = 0)

θ212 = P(X2 = 1)

θ311 = P(X3 = 0|0,0), θ312 = P(X3 = 1|0,0)

θ321 = P(X3 = 0|0,1), θ322 = P(X3 = 1|0,1)

θ331 = P(X3 = 0|1,0), θ332 = P(X3 = 1|1,0)

θ341 = P(X3 = 0|1,1), θ342 = P(X3 = 1|1,1)
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Parameter Independence
A basic hypothesis that is convenient and in some situations
real is that the parameters distributions are independent.

p(θ) =
n

∏
i=1

qi

∏
j=1

p(θi j)

where θ denotes the vector of all the parameters.
Graphically with two binary variables:

θ11 θ21 θ22

X1 X2 Sample 1

X1 X2 Sample 2
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Main Result

If we observe all the values of the variables in the
sample, then the ’a posteriori’ distributions of the
parameters θi j are also independent.

P(θ|D) = ∏n
i=1 ∏qi

j=1 P(θi j|D)

The Consequence:

We can apply the Dirichlet model to each conditional
probability on an independent way and update each of them in
an independent way.
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The Dirichlet Updating

Under conditions of independence

If the distribution of the parameters θi j is a Dirichlet
D(αi j1, . . . ,αi jri)

If in the database, there are Ni jk cases in which the
variable Xi takes the value xi

k, and the parents of this
variable are in configuration pai

j

Then the ’a posteriori’ distributions for the parameters θi j

are

D(αi j1 +Ni j1, . . . ,αi jri +Ni jri)
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Example
Assume two variables:
X1: Smoking; values 1 (yes) 2 (no)
X2: Lung Cancer; values 1 (yes) 2 (no)
Imagine the following sequence of observations and network:

c.1 c.2 c.3 c.4 c.5 c.6 c.7 c.8
X1 1 1 2 2 2 2 1 2
X2 2 1 1 2 1 1 2 2

Assuming that all the parameters have an ’a priori’ D(1,1), the
estimations are:

θ∗111 = 0.4, θ∗112 = 0.6,

θ∗211 = 0.4, θ∗212 = 0.6, θ∗221 = 4/7, θ∗222 = 3/7
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Equivalent Sample Sizes

Fraud Age Sex

Gas Jewelry

If the equivalent sample size (the sum of the parameters of the
Dirichlet distribution) represents the strength of our past
experience, Can we claim the same same experience when
estimating the probabilities of sex that when estimating the
probabilities of using credit car in a jewelry in a fraudulent way,
for males above 50?

This is a difficult problem.
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Consistency

A way of getting consistency and equivalent results for equivalent Bayesian
networks (networks representing exactly the same independence relationships) is
the following:

Assume a global equivalence sample size for all the network S.

For each distribution of parameters θi j consider an equivalent sample size

of Si j = S/(qi) and uniform parameters αi jk = S/(qi.ri).

If in the smoking-cancer example, we use for Smoking variable a D(1,1), then the
global sample size is S = 2, and for X2, as there are two possible configurations for
the parents, then this should be divided by two for the conditional probabilities and
we should assume D(0.5,0.5) for each one of them.

I am not sure that this is a good solution: if a variable has too many parents, the

parameter estimations will approach the maximum likelihood ones

Learning Credal Networks – p.37



Imprecise Interval Estimation

It is clear that we can apply the Imprecise Dirichlet Model to
estimate the probabilities instead of obtaining a precise
estimation.

The application is not immediate. We have physical
probabilities relating the variables of the model. The sample is
obtained by repetition independence.

We are going to estimate a joint credal set M for all the
variables X. All the probabilities in this credal set should verify
classical probabilistic independence relationships expressed by
the graph.

The basic property for epistemic independence should be
verified, but it will not be necessary to get the epistemic natural
extension. Learning Credal Networks – p.38



Two Main Approaches

The Local Approach.- Assume an IDM for each conditional
probability distribution. For the variable Xi conditioned to the
configuration pai

j, θi j follow an IDM with sample size Si j. The
estimation for P(xi

k|pai
j) is given by

[

Ni jk

Ni jk +Si j
,
Ni jk +Si j

Ni jk +Si j

]

The Global Approach.- Assume a global IDM for the joint
probability distribution for all the variables with sample size S.
Each θi j is an IDM with equivalent sample size S, but we will
not have strong independence in the estimated credal sets: the
conditional distributions can depend of the marginal ones.
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The Local Approach

The main problem is how to determine the local equivalent sample size: Si j.

If all the equivalent sample sizes are equal Si j = S, this can produce that
leave nodes have a very imprecise marginal.

X Y

The conditional probabilities will have small sample sizes, and will produce
wider intervals than the ones for X , as the sample is divided between all the
conditional probability distributions. When computing the marginal on Y we
will add the imprecision of X and the conditionals obtaining a lot of
imprecision about Y .

If we do as in the Bayesian model Si j = S/qi (where qi is the number of
parents configurations) then we will obtain too precise conditional
distributions with small samples.

I would consider an uniform sample size.
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The Global Approach

X Y

The interval probabilities for P(x) are
[

Nx

N +S
,

Nx +S
N +S

]

The interval probabilities for P(y|x) are
[

Nx,y

Nx +S
,

Nx,y +S
Nx +S

]

However, we do not have strong independence. As the parameters for the
Dirichlet distributions have to be consistent, we have that Sx = ∑y αx,y = αx.
So to have the full interval for P(y|x) we need that P(x) is the upper limit of its
interval. If the probability of P(x) goes down, then the intervals for P(y|x) are more
precise.
Computation is more difficult. Only in some particular cases, Walley has
unpublished results about computation. Learning Credal Networks – p.41



Structure Learning

There are two basic approaches:

Independence tests

Score + Search procedures
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PC Algorithm: Basic Hypothesis

Spirtes, Glymour, Scheines (1993) Causation, Prediction, and
Search

The independence relationships have a perfect
representation by a DAG

We have a very large database

Statistical tests have no errors

Under these conditions, the algorithm will discover and
equivalent Bayesian network.
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Statistical Tests

The algorithm is based in asking for the true of independence
relationships of the form:

I(X ,Y |Z)

where Z is a subset of variables.
It can work with any source providing this kind of information.
It we have a database, this is answered by means of statistical
tests of independence.

Learning Credal Networks – p.44



Independence Test: Conditional MI

Given three variables X ,Y,Z the Conditional Mutual Information
of X and Y given Z is defined as

MI(X ,Y |Z) = ∑
z

P(z)∑
x,y

P(x,y|z) log
(

P(x,y|z)
P(x|z).P(y|z)

)

It verifies the CE(X ,Y |Z) = H(X |Z)−H(X |Y,Z)
I can be analogously defined when Z is a set of variables.
The Empirical Mutual Information is the mutual information
computed from a database by considering P = P̂, the maximum
likelihood estimation in the database.
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Independence Test

To test whether X and Y are conditional independent given Z,
we compute the empirical mutual information MI(X ,Y |Z).
The statistic used for the test is G2 which is 2NCE(X ,Y |Z)
where N is the sample size.
It is known that, under the independence assumption, G2

follows a χ2 distribution with degrees of freedom equal to:

(rX −1)(rY −1) ∏
Z∈Z

rZ

where rW is the number of values of variable W .
It is possible to decrease in one the number of degrees of freedom for each
configuration of values of the variables that does not appear in the database.
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Examples
Determine whether there is independence for variables X1 and
X2 (with values 1 and 2) according to the following databases,

Case 1 2 3 4 5 6 7 8
X1 1 1 2 2 2 2 1 2
X2 2 1 1 2 1 1 2 2

can not be rejected with p-value 0.47. Independence

Case 1 2 3 4 5 6 7 8

X1 1 1 1 1 2 2 2 2

X2 1 1 1 1 2 2 2 2

Independence can not be rejected with p-value 0.001. Dependence
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Sample Size

The significance level is usually 0.01 or 0.05 (greater
values are better).

It assumes dependence when the probability of a χ2 with
the corresponding degrees of freedom is greater than G2

is smaller than the confidence level.

In case of accepting independence it does not mean that
data support independence, but that there is no evidence
in the data against it.

When sample size or the conditional set is big, then the
possibility of rejecting the null hypothesis is lower and
independence will be assumed: Lack of support implies
independence
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The Algorithm Structure

1. Find a graph pattern (gp): an undirected graph
2. Find some head to head links by testing independences
3. Orient the rest of links without producing cycles

Remark: There is some degree of arbitrariness and
sometimes, though independences can be represented by a
DAG the direction of the arrows is counterintuitive with
causality.

Learning Credal Networks – p.49



Graph Pattern: The Basic Condition

X Y

Z W

T

Two nodes, X and Y , are
connected if and only if
there is no subset SXY of the
set of vertices V such that
I(X ,Y |SX ,Y ).

We could try to discover the graph pattern following this
criterion, but it will be inefficient (too many tests) and
inaccurate (conditioning to many variables).
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Finding the Graph Pattern
V is the set of nodes, and every independence relationships can be
tested. Each node has a set of adjacent nodes ADJX .

1. Start with a complete undirected graph gp
2. i = 0
3. Repeat

4. For each X ∈V
5. For each Y ∈ ADJX

6. Determine if there is S⊆ ADJX −{Y} with |S|= i
and I(X ,Y |S)

7. If this set exists
8. Make SXY = S
9. Remove X−Y link from gp

10. i = i+1
11. Until |ADJX | ≤ i, ∀X
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Finding Head-to-Head Links

1. For each uncoupled meeting X−Z−Y
2. If Z 6∈ SXY

3. Orient X−Z−Y as X → Z← Y

If a variable is connected with other two variables and it is not
in the separator of them, then the arrows have to be
head-to-head.
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More Orientations

The basic idea is that no new head-to-head links are created
and that the DAG condition is preserved.

1. While no more edges can be oriented
2. For each uncoupled meeting X → Z−Y

3. Orient Z−Y as Z→ Y
4. For each X−Z such that there is

a directed path from X to Z
5. Orient X−Y as X → Y

6. For each uncoupled meeting X−Z−Y
such that X →W,Y →W,Z−W
7. Orient Z−W as Z→ YW
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Imprecise Independence Tests

The independence scores we shaw can be extended to conditional
independence tests which is the only thing that has to be done in PC
algorithm.

Entropy based score. To test I(X ,Y |Z), we compute:

IND = ∑
z,x

P̂(z)H(M Z=z
Y )

where M Z=z
Y is the credal set about Y estimated with the part of the

sample for which Z = z, with the IDM and S.

DEP = ∑
z,x

P̂(z,x)H(M Z=z,X=x
Y )

where M Z=z,X=x
Y is the credal set about Y estimated with the part of

the sample for which Z = z and X = x, with the IDM and S.

Decide for dependence if DEP > IND and for independence
otherwise. Learning Credal Networks – p.54



Independence Tests: Imprecise Dirichlet
Compute the sample size: SZ,X = S/qX ,Z, where S is the global
sample size and qX ,Z is the number of joint configurations for
variables X and Z.

Assign Dirichlet parameters, αz,x,y with the following criterion: all the
parameters should be at least SZ,X/(2.rY ). The rest of SZ,X is equally
distributed between the values of Y with lowest value of frequency:
Nz,x,y.

Compute Dirichlet parameters: αz,y = ∑x αz,x,y,SZ = ∑y αz,y.

Compute the scores for the conditional probability of Y : DEP− IND,
where

DEP = ∏z,x
Γ(SZ,X )

Γ(Nz,x+SZ,X )

(

∏y
Γ(Nz,x,y+αz,x,y)

Γ(αz,x,y)

)

IND = ∏z
Γ(SZ)

Γ(Nz+SZ)

(

∏y
Γ(Nz,y+αz,y)

Γ(αz,y)

)

Decide for dependence if DEP− IND > 0
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Score+Search: Pros and Cons

Can make compromises (ambiguous regions)

Well justified

Can take into account simplifications of conditional
probabilities.

It is computationally difficult and then the solutions are
almost always approximate.
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The Bayesian Score

Applying Bayes Rule:

P(G|D) =
P(D|G).P(G)

P(D)

where

P(D) is the probability of data, which is constant.

P(G) is the ’a priori’ probability of graph, which can be
uniform or incorporate any other information that the
experts can provide.

P(D|G) is called the marginal likelihood

If we assume P(G) constant, then maximizing the ’a posteriori’

information is equivalent to maximizing the marginal likelihood.Learning Credal Networks – p.57



The Marginal Likelihood

We can express the marginal likelihood as:

P(D|G) =
∫

P(D|θ,G).P(θ|G)dθ

A graph with more parameters implies a lower value: the
probability of two identical values is greater than the product of
the probability of the two values.
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Marginal Likelihood Computation

Under local and global parameter independence

If ’a priori’ distributions are Dirichlet

If the data are all complete

Then, the marginal likelihood is

P(D|G) =
n

∏
i=1

qi

∏
j=1

Γ(Si j)

Γ(Ni j +Si j)

ri

∏
k=1

Γ(αi jk +Ni jk)

Γ(αi jk)

Where each θi j is a Dirichlet D(αi j1, . . . ,αi jri) and
Si j = ∑ri

k=1 = αi jk.
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Parameters

The K2 metric is obtained when all the Dirichlet parameters
are set to one:

P(D|G) =
n

∏
i=1

qi

∏
j=1

(ri−1)!
(Ni j + ri−1)!

ri

∏
k=1

(Ni jk)!

With this score, equivalent graphs (they represent the same
independencies) do not have the same score.
An equivalent score can be obtained by considering a global
sample size S and then selecting the parameters for all the
conditional probabilities according to the expression:

αi jk =
S

ri.qi
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Example. Neapolitan (1994)

Study about college students married by age 30. We want to
test whether there is correlation between college graduation
and getting divorced.
Variables:

X1 (1: graduate, 2: do not graduate)

X2 (1: divorced by 50, 2: do not divorce by 50)

We have two possible network structures:

X1 X2
G1

X1 X2
G2

Assume that we compute the equivalent sample size with
S = 4. ’a priori’ probabilities are D(2,2) and conditional
probabilities are D(1,1).
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Data

Suppose that we have the data in the following table:

Case 1 2 3 4 5 6 7 8
X1 1 1 1 2 1 2 1 2
X2 1 2 1 2 1 1 1 2

P(D|G1)=

(

Γ(4)

Γ(4+8)

Γ(2+5)Γ(2+3)

Γ(2)Γ(2)

)(

Γ(2)

Γ(2+5)

Γ(1+4)Γ(1+1)

Γ(1)Γ(1)

)(

Γ(2)

Γ(2+3)

Γ(1+1)Γ(1+2)

Γ(1)Γ(1)

)

= 7.2150×10−6

P(D|G2) =

(

Γ(4)

Γ(4+8)

Γ(2+5)Γ(2+3)

Γ(2)Γ(2)

)(

Γ(4)

Γ(4+8)

Γ(2+5)Γ(2+3)

Γ(2)Γ(2)

)

= 6.7465×10−6

The first model (dependence) has more score (but little
difference).
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Searching an Optimal Graph

The space of possible directed acyclic graphs for n variables is
huge:















f (0) = 1;
f (1) = 1;

f (n) = ∑n
i=1(−1)i+1.(

n

i
)2i(n−i)d(n− i)

Heuristics methods are necessary to optimize the score in this
space.
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The K2 Algorithm

It is assumed an ordering of the nodes

It is also assumed a maximum number of parents for each
node

Initial node does not have parents

Then for each node, it starts with the empty set of parents
and then add as parent the node that preceding it in the
order, produces a bigger increasing in the score.

It continues adding parents while the score increases and
the number of parents in less than the maximum.

Learning Credal Networks – p.64



Decomposability
The key property of the score that makes this algorithm feasible is
decomposability.
This score,

P(D|G) =
n

∏
i=1

qi

∏
j=1

Γ(si j)

Γ(Ni j + si j)

ri

∏
k=1

Γ(αi jk +Ni jk)

Γ(αi jk)

or the logarithm of it:

logP(D|G) =
n

∑
i=1

qi

∑
j=1

log
Γ(si j)

Γ(Ni j + si j)

ri

∑
k=1

log
Γ(αi jk +Ni jk)

Γ(αi jk)

is that local changes imply only local computations.
The log marginal likelihood is a sum of functions depending of nodes
and its parents. If only one node changes its parents, then only the
part of the score corresponding to this node, has to be recomputed.
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Example

X1 X2

X3 X4

X5

X1
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Example

X1 X2

X3 X4

X5

X2
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X1 X2

X3 X4
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Example

X1 X2

X3 X4

X5
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Example

X1 X2

X3 X4
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Example

X1 X2

X3 X4

X5X5
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X1 X2

X3 X4
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Example

X1 X2

X3 X4

X5
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Learning under an order

If we want to compute a network, compatible with the order X1, . . . ,Xn.

Build for each Xi a classification tree (upper entropy procedure)
depending of variables X1, . . . ,Xi−1.

Assign interval probabilities to the variable Xi.

Make all the variables appearing in the classification tree of Xi its
parents, and the tree the conditional probability.

It is possible to compute directly with trees.
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Heuristic Search

More sophisticated search procedures have been considered.
In general, they start with some Bayesian network (empty, K2,
tree). The search space is explored with some basic
movements. Typical ones are:

Adding

Removing

Reversing
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Exploring the Space

Different methods have been using to explore the space
(NP-hard problem):

Hill climbing

Simulated annealing

Genetics algorithms

Variable neighborhood search
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Searching for Trees

Searching for trees structures (each node at most one parent)
can be done in polynomial time by means of the Chow-Liu
algorithm.
1. Construct a graph will all the nodes without arcs
2. For each pair Xi,X j comp. weight W (i, j) = Score(X j|Xi)−Score(X j)
3. Find a tree with maximum weight

(Kruskal algorithm)

1.0

0.8

2.2

1.3 0.9

1.5
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Tree Construction

Usually, it considers the mutual information as weight
(likelihood score). The model complexity is controlled by
the structure.

It is efficient to build and sometimes provides good results

Sometimes misses some important links, and it can add
non-necessary links.
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Model Selection-Model Averaging

In general, given some data we have selected an only model
and all the predictions are done according to this model.
In a pure Bayesian approach to estimate the probability of an
event E, we should average on all the possible models
according to their ’a posteriori’ probability given the data.

P(E|D) = ∑
G

P(E|D,G)P(G|D)

In general, this is very difficult to compute and most of the
models have very small probability. It is more common to
select a set of more probable models G and then compute:

P(E|D) = ∑
G∈G

P(E|D,G)P(G|D)
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Score+Search: Imprecise

The upper entropy score can be generalized by
considering:

UENT R =
n

∑
i=1

qi

∑
j=1

P̂(paj)H(M Pai=paj
Xi

)

Where Pai is the set of parents of Xi; qi the number of
configurations of Pai; paj is the configuration number j of
these parents; and M Pai=paj

Xi
is the credal set about Xi

estimated from the part of the sample for which Pai = paj.

This is a decomposable score.
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Imprecise Dirichlet Score

This is more difficult to generalize (even for two variables we used an
approximation).

There are a lot of algorithms (for example K2) based on determining
the deletion or addition of an arc.

Z X

Y

To consider the score of adding arc from X to Y , when there is an arc
from Z to Y , we could consider the same value DEP− IND when
testing independence of X and Y given Z.

The score of deleting an arc is the opposite of the score of adding.

We can design a greedy algorithm in which we always do the step
with the highest score.
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Different Models

We have decide for independence if dependence does not
dominate independence.

We have the possibility of searching in different lines: the
set of non-dominated models.

One difficulty if the how to compare different models which
have more differences than a single arc. It is possible to
determine approximations (open problem).
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