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Outline

Introduction to Propagation in Bayesian Networks.

Computation with Strong Independence.

Adding Transparent Variables.

A Greedy Algorithm.

Other Approaches.
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The Basic Problem: Asia Network
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The Basic Problem: Asia Network
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Auxiliar Structure: Joint Tree
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Auxiliar Structure: Joint Tree
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Auxiliar Structure: Joint Tree
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Algorithm

1. Compute the joint tree

2. Assign potentials

3. Incorporate observations (e)

4. Compute messages

5. Compute ’a posteriori’ information
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Messages: Computation
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Messages: Computation
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Computing Conditional Probabilities

Smoking
Bronchitis

Lung Cancer

Lung Cancer
Bronchitis

Tuber. or LC

Cough
Bronchitis

Tuber. or LC

Tuberculosis
Lung Cancer
Tuber. or LC

Tuberculosis
Asia

Dyspnoea
Bronchitis

Cough

X-Ray
Tuber. or LC

P(lung∩ e),P(¬lung∩ e)

P(lung|e) = P(lung∩e)
P(lung∩e)+P(¬lung∩e)

→

→ →

←

Propagation Algorithms in Credal Networks – p.8



Strong Independence
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Strong Independence
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Computation: Basics

Usually the credal sets are given by intervals

The upper and lower probabilities are obtained in the
extreme points of the credal sets. So it is enough to
consider these extreme points

It is possible to consider all the possible combinations of
the extreme points of conditional credal sets MY |X , for each
one of them compute the conditinal probability of interest
and then to obtain the maximum and minimum value

It is NP-hard to determine the points in which the
maximum and minimum is obtained
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Transparent Nodes

Smoking

Bronchitis

A credal set MBron(.|Smoking)

A credal set MBron(.|¬Smoking) Propagation Algorithms in Credal Networks – p.11



Transparent Nodes

SmokingT1 T2

Bronchitis

A credal set MBron(.|Smoking)

A credal set MBron(.|¬Smoking)

T1 has a value for each extreme
of MBron(.|Smoking)

T2 has a value for each extreme
of MBron(.|¬Smoking)
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Example

If the conditional probabilities are given by intervals:

P(Y |X) =















x1 x2

y1 [0.2,0.3] [0.4,0.6]

y2 [0.7,0.8] [0.4,0.6]

1T T2

Y

.4 .6

Y

.6 .4

Y

.3 .7

Y

.2 .8

X

(x1,y1) (x1,y2) (x2,y1) (x2,y2)

P1 0.2 0.8 0.4 0.6

P2 0.2 0.8 0.6 0.4

P3 0.3 0.7 0.4 0.6

P4 0.3 0.7 0.6 0.4
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Advantages

All the information is represented with the same data structure (potentials).

For each configuration of transparent variables T = t, we have a joint
probability distribution for the rest of variables (X1, . . . ,Xn), denoted by Pt. It
can be computed following the same procedure than in the precise
probability case.

We can compute the lower interval for P(y|e) as an optimization problem:

inf
t

Pt(y|e)

To compute in an exact way we can use modifications of general
propagation algorithms, but the general complexity is ∏T∈T rT probabilistic
propagations, where T is the set of transparent nodes, and rT is the number
of elements of T .
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Transparent Nodes in Joint Trees

X ,Y,T ′

If we add T = t to the evidence e, then after propagation, in any node we
can compute Pt(e).

If we interested in the conditional probability of Y = y, then if we add this to
the evidence, we can obtain Pt(e,Y = y).

Dividing we can obtain the desired conditional probability distribution.

If all the incoming messages to the node containing T ′ are correct and we
want to compute the value of the conditional probability for a configuration
equal to the current one, changing T ′ = t ′1 to T ′ = t ′2, we only have to remove
one observation in this node and add other one, and then we have the
objective function.
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A Greedy Algorithm

X ,Y,T ′

We start with an arbitrary configuration of transparent variables and carry
out a probabilistic propagation.

We are in a node, compute the objective for the different values of the
variable T ′, and change it to the case with higher value. We add this value
to the current evidence.
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A Greedy Algorithm

X ,Y,T ′ X ,Z,T ′′
→

Φe,t,Φ′e,t,y

We start with an arbitrary configuration of transparent variables and carry
out a probabilistic propagation.

We are in a node, compute the objective for the different values of the
variable T ′, and change it to the case with higher value. We add this value
to the current evidence.

We compute two messages to a neighboring group: one with the current
evidence (including transparent nodes) and other with the current evidence
plus Y = y. We repeat optimization for the transparent variables in this new
group.
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A Greedy Algorithm

X ,Y,T ′ X ,Z,T ′′
→

Φe,t,Φ′e,t,y

We start with an arbitrary configuration of transparent variables and carry
out a probabilistic propagation.

We are in a node, compute the objective for the different values of the
variable T ′, and change it to the case with higher value. We add this value
to the current evidence.

We compute two messages to a neighboring group: one with the current
evidence (including transparent nodes) and other with the current evidence
plus Y = y. We repeat optimization for the transparent variables in this new
group.

We stop in a local minimum.
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Properties

It computes inner approximations of the intervals:
[pc(y|e), pc(y|e)]⊆ [p(y|e), p(y|e)].

It has been implemented in Elvira system for conditional
interval probabilities.

It is very fast and we have not found a case in which the
intervals are not exact yet. The problem is to have
examples with imprecision and exact results.
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