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The introduction of the notion of independence in possibility theory is a problem of long-standing
interest. Many of the measure-theoretic definitions that have up to now been given in the liter-
ature face some difficulties as far as interpretation is concerned. Also, there are inconsistencies
between the definition of independence of measurable sets and possibilistic variables. After a
discussion of these definitions and their shortcomings, a new measure-theoretic definition is sug-
gested, which is consistent in this respect, and which is a formal counterpart of the definition
of stochastic independence in probability theory. In discussing the properties of possibilistic
independence, I draw from the measure- and integral-theoretic treatment of possibility theory,
discussed in Part I of this series of three papers. I also investigate the relationship between this
definition of possibilistic independence and the definition of conditional possibility, discussed
in detail in Part II of this series. Furthermore, I show that in the special case of classical,
two-valued possibility the definition given here has a straightforward and natural interpretation.

INDEX TERMS: Possibility theory, possibilistic independence, logical independence, conditional
possibility.



1 POSSIBILISTIC INDEPENDENCE: A SURVEY

This is the third in a series of three papers on the measure- and integral-theoretic aspects of
possibility theory, in which I deal with the notion of possibilistic independence. In the second
part of this series I have briefly discussed the notions ‘noninteractivity’ and ‘possibilistic inde-
pendence’, as introduced by Zadeh [1978] and Hisdal [1978]. Both notions constitute a first
attempt at introducing a counterpart for the notion of stochastic independence in possibility
theory. Remark that Zadeh and Hisdal concentrate on the independence of variables, and leave
the independence of events and fuzzy events undealt with. Furthermore, I have indicated in
Part II that Hisdal’s definition of possibilistic independence suffers from a number of shortcom-
ings. When these are eliminated, her notion of independence essentially coincides with Zadeh’s
noninteractivity.

Possibilistic independence was also studied by Nahmias [1978], and in his footsteps by Rao
and Rashed [1981]. It was briefly discussed by Wang [1982]; and more recently, Dubois, Prade
and co-workers [Benferhat et al., 1994] [Dubois et al., 1994] studied possibilistic independence
in a logical setting. Let me give a concise summary of their ideas and results.

Nahmias [1978] considers a universe X and what we have called in parts I and II a normal
([0, 1],≤)-possibility measure Π on (X, ℘(X)) – he himself calls it a scale. He calls the elements
A1, . . . , An, n ∈ N \ {0}, of ℘(X) mutually unrelated iff for any k in N \ {0} with k ≤ n, and
for arbitrary and different j1, . . . , jk in {1, . . . , n}:

Π(Aj1 ∩ · · · ∩Ajk) =
k

min
`=1

Π(Aj`). (1)

His source of inspiration is the formally analogous formula for the stochastic independence of
events in probability theory [Burrill, 1972]. Also, he calls two X−R-mappings f1 and f2 – fuzzy
variables in his terminology – unrelated iff

(∀(a, b) ∈ R2)(f−1
1 ({a}) and f−1

2 ({b}) are mutually unrelated), (2)

or equivalently,

(∀(a, b) ∈ R2)(Π(f−1
1 ({a}) ∩ f−1

2 ({b})) = min(Π(f−1
1 ({a})), Π(f−1

2 ({b})))). (3)

Rao and Rashed [1981] point out that according to Eq. (1) any element A of ℘(X) is mutually
unrelated to itself, since Π(A ∩ A) = min(Π(A),Π(A)) = Π(A). With reason, they stress that
in probability theory this is generally not the case, and that this property creates semantical
problems. They therefore propose to use the phrase ‘min-related ’ instead of ‘unrelated’.

Wang [1982] generalizes Nahmias’ approach by considering an ample field R on X and
calling an X − R-mapping a fuzzy variable only if it is R − ℘(R)-measurable (see also Part I,
Definition 4.1). His definition of independence for such fuzzy variables is essentially the same as
Nahmias’ definition of unrelatedness.

In my terminology, the fuzzy variables of Nahmias (and Wang) are possibilistic variables in
(R, ℘(R)), where X is considered as a basic space, provided with an ample field ℘(X). Using
the notations of Part I, subsection 4.2, Eq. (3) may be rewritten as

(∀(a, b) ∈ R2)(π(f1,f2)(a, b) = min(πf1(a), πf2(b))), (4)

This formula has an obvious probabilistic counterpart (see, for instance, [Burrill, 1972] Theo-
rem 11-4A with corollary).
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In my opinion, the approach of Nahmias [1978] for the independence of events faces a number
of difficulties. On the one hand, there is the interpretational difficulty already laid bare by Rao
and Rashed [1981]. That any event can be called mutually unrelated to itself – indeed, to any of
its subsets – is, to say the least, a little strange. It seems to me that giving the notion another
name in order to evade this interpretational difficulty misses the point, because it fails to explain
how such a radical difference in interpretation can emerge between stochastic independence and
this new notion.

On the other hand, we know that events can always be associated through their characteristic
mappings with special fuzzy (or, in my terminology, possibilistic) variables. None of the above-
mentioned authors answers the question whether there exists a relationship between the mutual
unrelatedness of events and the unrelatedness (or independence) of their characteristic mappings.
The existence of such a relationship is a central idea in probability theory. Moreover, it will
be shown further on that such a relationship does not generally exist, starting from Eqs. (1)
and (2). Interestingly, this difficulty appears to be linked with the interpretational problem
discussed above.

In this paper, I intend to construct a more general theory of possibilistic independence, and
at the same time provide a solution for the above-mentioned difficulties. My guiding principle
in doing so will be the (formal) analogy with probability theory. My tools will be the measure-
and integral-theoretic treatment of possibility theory, developed in parts I and II of this series.
At the same time, it will be shown that the definition of possibilistic independence given here
has an interesting interpretation when classical possibility is considered.

In two interesting and important papers [Benferhat et al., 1994] [Dubois et al., 1994] Ben-
ferhat, Dubois, Fariñas del Cerro, Herzig and Prade discuss the independence of events (or
propositions) in possibility theory in a logical setting. In all, they discuss three types of in-
dependence. The first is based upon Zadeh’s notion of noninteractivity for variables (see also
Part II, section 1). In [Dubois et al., 1994] two events A and B are called unrelated in Zadeh’s
sense iff

Π(A ∩B) = min(Π(A),Π(B)). (5)

This definition is essentially the same as the one given by Nahmias, see Eq. (1). In [Benferhat
et al., 1994] however, the authors correctly note that Zadeh’s definition of noninteractivity for
variables implies, when events are identified with their characteristic mappings, that A and B
are unrelated iff























Π(A ∩B) = min(Π(A), Π(B))

Π(A ∩ coB) = min(Π(A),Π(coB))

Π(coA ∩B) = min(Π(coA),Π(B))

Π(coA ∩ coB) = min(Π(coA), Π(coB))

(6)

a criterion which I derived independently in my doctoral dissertation [De Cooman, 1993], and
a generalization of which the reader will also find in section 4. However, this first kind of
independence in not studied in much detail by the above-mentioned authors. They devote
much more time and effort to two other forms of independence for events, which they call weak
and strong independence. These definitions are based upon the notion of conditioning. As also
discussed in Part II, section 1 Dubois and Prade have defined the conditional possibility Π(A | B)
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of A given B as the maximal solution of the equation

Π(A ∩B) = min(Π(A | B), Π(B)) (7)

or in other words,

Π(A | B) =

{

1 ; Π(A ∩B) = Π(B)
Π(A ∩B) ; Π(A ∩B) < Π(B).

(8)

The necessity N(A) of A is defined as N(A) = 1−Π(coA) and the conditional necessity N(A | B)
of A given B as N(A | B) = 1−Π(coA | B). The event A is called strongly independent of B iff
[Dubois et al., 1994]

N(A | B) = N(A) > 0.

Strong independence defines a binary relation on the set of events, which in contrast to unre-
latedness, is not a symmetric relation. Dubois et al. [1994] show that this relation completely
determines the qualitative possibility relation induced by Π.

The event A is called weakly independent of B iff [Dubois et al., 1994]

N(A | B) > 0 and N(A) > 0.

Strong independence clearly implies weak independence, and Dubois et al. [1994] show that the
binary relation of weak independence can also be used to completely characterize the qualitative
possibility relation induced by Π. They also integrate the notion of weak independence in the
framework of belief revision.

I feel that the notion of unrelatedness of events, as defined by Eq. (6) deserves a similar
study as the notions of strong and weak independence. Note that Dubois et al. [1994] make
such a study for the notion of unrelatedness as defined by Eq. (5), which is in my view, not the
right definition, as I have already argued before. I also want to remark that the definitions and
properties of weak and strong independence heavily rely on the specific solution (8) of Eq. (7)
for Π(A | B), which is based upon the meta-theoretical principle of minimum specificity (see
also the discussion in Part II, sections 1 and 5) and on the specific choice of the operator min
in the defining equation (7).

In what follows, I deal with the possibilistic independence of possibilistic variables, fuzzy
variables (fuzzy events) and measurable sets (events). The independence of possibilistic variables
is treated first in section 2. As a special case, the possibilistic independence of fuzzy events is
studied in section 3. Yet a further specialization, the independence of events, is dealt with
in section 4. In section 5, I discuss the special case of classical possibility, where possibilistic
independence and logical independence turn out to be closely related notions.

Let me conclude this introduction with a number of notational conventions. In what follows,
(Ω,RΩ,ΠΩ) denotes a (L,≤)-possibility space. The possibility distribution of ΠΩ is denoted by
πΩ. It is furthermore assumed that ΠΩ is normal. By T we shall mean a triangular norm on
(L,≤), such that (L,≤, T ) is a complete lattice with t-norm. We shall sometimes make use of
results and definitions given in the first and second paper of this series, which will be referred
to as Parts I and II, respectively.

Finally, for most of the results derived here, the reader will find explicit references to their
probabilistic counterparts. This should help her find her way in some of the more abstract lines
of reasoning that follow.
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2 INDEPENDENCE OF POSSIBILISTIC VARIABLES

We start this treatment of possibilistic independence with a basic definition, of which all the
other independence definitions turn out to be special cases.

Definition 2.1. Consider a nonempty family {Oj | j ∈ J} of subsets of RΩ. This family is
called (ΠΩ, T )-independent iff for any n in N \ {0}, for arbitrary and different j1, . . . , jn in J ,
for any Fk in Ojk , and for any Gk in {Fk, coFk}, k = 1, . . . , n:

ΠΩ(
n
⋂

k=1

Gk) = Tn
k=1ΠΩ(Gk). (9)

In this case, we also say that the sets of events Oj , j ∈ J , are (ΠΩ, T )-independent. Whenever
we do not want to mention the (L,≤)-possibility measure ΠΩ and/or the t-norm T explicitly,
we simply speak of (possibilistic) independence instead of (ΠΩ, T )-independence.

Why exactly this definition is proposed becomes clear when we take a closer look at the def-
inition of stochastic independence of event sets in probability theory (see, for instance, [Jacobs,
1978] Definition VI.6.1, [Burrill, 1972] section 11-5).

Definition 2.2. Let (Ω,SΩ, PrΩ) be a probability space. Consider a nonempty family {Oj |
j ∈ J} of subsets of SΩ. This family is called independent (for PrΩ) iff for any n in N \ {0}, for
arbitrary and different j1, . . . , jn in J , and for any Fk in Ojk , k = 1, . . . , n:

PrΩ(
n
⋂

k=1

Fk) =
n

∏

k=1

PrΩ(Fk). (10)

Let me point out that Definition 2.1 very closely resembles this definition, with the exception
of one important detail: in the probabilistic definition, the phrase ‘for any Gk in {Fk, coFk}’
does not appear, and (9) is modified accordingly. Let me briefly explain my reasons for including
this phrase in Definition 2.1.

Let A and B be elements of SΩ and assume that PrΩ(A ∩ B) = PrΩ(A)PrΩ(B). Using
the additivity and the complementation laws for probability measures, it is easily shown that
PrΩ(A ∩ coB) = PrΩ(A)PrΩ(coB). From this we may conclude that the special properties of
probability measures render the above-mentioned phrase superfluous. The independence formula
(10) is formally invariant under complementation of an arbitrary number of subsets in the family
{Fk | k = 1, . . . , n}.

On the other hand, as is shown in the following example, an analogous course of reasoning
is not necessarily valid in the possibilistic case. Therefore, in order to render the definition
of possibilistic independence formally invariant under complementation, we must explicitly add
the phrase ‘for any Gk in {Fk, coFk}’ to the independence definition, and accordingly turn the
independence formula (10) into (9).

Example 2.3. Let Ω = {1, 2, 3}, RΩ = ℘({1, 2, 3}), (L,≤) = ([0, 1],≤) and T = min. The
([0, 1],≤)-possibility measure ΠΩ is completely determined by πΩ(1) = 1, πΩ(2) = 1 and πΩ(3) =
1
2 . Let furthermore A = {1} and B = {1, 2}. Then A ∩B = {1} and A ∩ coB = {1} ∩ {3} = ∅,
whence ΠΩ(A) = 1, ΠΩ(B) = 1, ΠΩ(coB) = 1

2 , ΠΩ(A ∩ B) = 1 and ΠΩ(A ∩ coB) = 0. Clearly,
ΠΩ(A ∩B) = min(ΠΩ(A), ΠΩ(B)), whereas ΠΩ(A ∩ coB) 6= min(ΠΩ(A),ΠΩ(coB)).
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From Definition 2.1 we derive the following definition for the possibilistic independence of
possibilistic variables (probabilistic counterpart: [Jacobs, 1978] Definition VI.6.5). In Corol-
lary 2.5 we give a number of criteria for this new form of possibilistic independence. Since we
are going to work with possibilistic variables, it deserves to be mentioned that the set Ω will
henceforth be considered as a basic space.

Definition 2.4. Consider an nonempty family {Xj | j ∈ J} of universes. For every j in J we
consider an ample field Rj on Xj and a RΩ − Rj-measurable Ω − Xj-mapping fj , i.e., fj is
a possibilistic variable in (Xj ,Rj). We call the family {fj | j ∈ J} of possibilistic variables
(ΠΩ, T )-independent iff the family {f−1

j (Rj) | j ∈ J} of subsets of RΩ is (ΠΩ, T )-independent.
In this case we also say that the possibilistic variables fj , j ∈ J , are (ΠΩ, T )-independent.
Whenever we do not want to mention the (L,≤)-possibility measure ΠΩ and/or the t-norm T
explicitly, we simply speak of (possibilistic) independence instead of (ΠΩ, T )-independence.

Corollary 2.5. The following propositions are equivalent.

(i) The family {fj | j ∈ J} of possibilistic variables is (ΠΩ, T )-independent.

(ii) For any n in N \ {0}, for arbitrary and different j1, . . . , jn in J , and for any Ak in Rjk ,
k = 1, . . . , n:

ΠΩ(
n
⋂

k=1

f−1
jk

(Ak)) = Tn
k=1ΠΩ(f−1

jk
(Ak)).

(iii) For any n in N \ {0}, for arbitrary and different j1, . . . , jn in J , and for any xk in Xjk ,
k = 1, . . . , n:

ΠΩ(
n
⋂

k=1

f−1
jk

([ xk ]Rjk
)) = Tn

k=1ΠΩ(f−1
jk

([xk ]Rjk
)).

Proof. Let us first show that (i) and (ii) are equivalent. First, assume that (i) holds. Con-
sider arbitrary n in N \ {0}, arbitrary and different j1, . . . , jn in J and arbitrary Ak in Rjk ,
k = 1, . . . , n. By definition, f−1

jk
(Ak) ∈ f−1

jk
(Rjk). Since the family {f−1

j (Rj) | j ∈ J} is
by assumption (ΠΩ, T )-independent, it in particular follows from Definition 2.1 that (choose
Gk = Fk = f−1

jk
(Ak), k = 1, . . . , n) ΠΩ(

⋂n
k=1 f−1

jk
(Ak)) = Tn

k=1ΠΩ(f−1
jk

(Ak)). We therefore
conclude that (ii) holds.

Conversely, assume that (ii) holds. Consider arbitrary n in N \ {0}, arbitrary and different
j1, . . . , jn in J , arbitrary Fk in f−1

jk
(Rjk) and arbitrary Gk in {Fk, coFk}, k = 1, . . . , n. For

k = 1, . . . , n we have that Gk ∈ f−1
jk

(Rjk), since f−1
jk

(Rjk) is clearly an ample field on Ω. This
implies that there exists a Ak in Rjk such that Gk = f−1

jk
(Ak). By assumption, we have that

ΠΩ(
⋂n

k=1 f−1
jk

(Ak)) = Tn
k=1ΠΩ(f−1

jk
(Ak)), or equivalently, ΠΩ(

⋂n
k=1 Gk) = Tn

k=1ΠΩ(Gk). We may
therefore conclude that the family {f−1

j (Rj) | j ∈ J} is (ΠΩ, T )-independent. This proves the
equivalence of (i) and (ii).

Let us now prove that (ii) and (iii) are equivalent. First, assume that (ii) holds. Consider
arbitrary n in N\{0}, arbitrary and different j1, . . . , jn in J and arbitrary xk in Xjk , k = 1, . . . , n.
For the choice Ak = [ xk ]Rjk

, k = 1, . . . , n, we have by assumption that ΠΩ(
⋂n

k=1 f−1
jk

(Ak)) =
Tn

k=1ΠΩ(f−1
jk

(Ak)), or equivalently, ΠΩ(
⋂n

k=1 f−1
jk

([ xk ]Rjk
)) = Tn

k=1ΠΩ(f−1
jk

([ xk ]Rjk
)), whence

indeed (iii). Conversely, assume that (iii) holds. Consider arbitrary n in N \ {0}, arbitrary and
different j1, . . . , jn in J and arbitrary Ak in Rjk , k = 1, . . . , n. For any xk in Xjk , k = 1, . . . , n,
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we have by assumption that ΠΩ(
⋂n

k=1 f−1
jk

([ xk ]Rjk
)) = Tn

k=1ΠΩ(f−1
jk

([ xk ]Rjk
)). If we take the

supremum on both sides of this equality, we find that

sup
(x1,... ,xn)∈A1×···×An

ΠΩ(
n
⋂

k=1

f−1
jk

([ xk ]Rjk
)) = sup

(x1,... ,xn)∈A1×···×An

Tn
k=1ΠΩ(f−1

jk
([ xk ]Rjk

)).

For the left hand side of this equation we may write that, taking into account Part I, Eq. (1),

sup
(x1,... ,xn)∈A1×···×An

ΠΩ(
n
⋂

k=1

f−1
jk

([ xk ]Rjk
)) = ΠΩ(

n
⋂

k=1

f−1
jk

(Ak)).

For the right hand side we find that, again taking into account Part I, Eq. (1),

sup
(x1,... ,xn)∈A1×···×An

Tn
k=1ΠΩ(f−1

jk
([ xk ]Rjk

)) = Tn
k=1ΠΩ(f−1

jk
(Ak)).

Therefore ΠΩ(
⋂n

k=1 f−1
jk

(Ak)) = Tn
k=1ΠΩ(f−1

jk
(Ak)), whence (ii).

In Theorem 2.6, we consider the special case of two possibilistic variables. The analogy with
the probabilistic case is striking. From statement (ii) of this theorem we may conclude that the
definition of the possibilistic independence of possibilistic variables given here generalizes the
definitions of Nahmias et al., mentioned in the previous section, see Eqs. (2)–(4).

Theorem 2.6 may also be interpreted a formalization of the case considered by Zadeh and
Hisdal, discussed in Part II, section 1. In statement (iv) we clearly distinguish a generalization
of Part II, Eq. (5): Zadeh’s noninteractivity is special case of the possibilistic independence
discussed here. When the t-norm T is weakly invertible, we may therefore expect that there
exists a relationship between possibilistic independence and conditional possibility. This relation
is expressed by statements (v)–(vii). They are a generalization of Part II, Eq. (15) and not of
the Eqs. (9) and (10) in Part II, that were originally proposed by Hisdal.

Before formulating this theorem, we must define our notation. We assume that X1 and X2 are
two universes, provided with the respective ample fields R1 and R2. We consider a possibilistic
variable f1 : Ω → X1 in (X1,R1) and a possibilistic variable f2 : Ω → X2 in (X2,R2). We know
from Part II, Proposition 4.1 that the Ω −X1 ×X2-mapping (f1, f2) is a possibilistic variable
in (X1 ×X2,R1 ×R2). Let us denote the possibility distributions of f1, f2 and (f1, f2) by Πf1 ,
Πf2 and Π(f1,f2) respectively, and their possibility distribution functions by πf1 , πf2 and π(f1,f2)
respectively.

Theorem 2.6. We shall assume where necessary, i.e., for the statements (v)–(vii) below, that
the t-norm T is weakly invertible, so that we may rightfully speak of conditional (L,≤, T )-
possibility. The following propositions are equivalent.

(i) f1 and f2 are (ΠΩ, T )-independent.

(ii) For any A1 in R1 and A2 in R2, Π(f1,f2)(A1 ×A2) = T (Πf1(A1), Πf2(A2)).

(iii) For any x1 in X1 and x2 in X2, π(f1,f2)(x1, x2) = T (πf1(x1), πf2(x2)).

(iv) Π(f1,f2) = Πf1 ×T Πf2.

(v) For any A1 in R1, Πf1|f2(A1 | ·)
(Πf2

,T )

= Πf1(A1).
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(vi) For any A2 in R2, Πf2|f1(A2 | ·)
(Πf1

,T )

= Πf2(A2).

(vii) For any x1 in X1 and x2 in X2,

T (πf1(x1), πf2(x2)) = T (πf1|f2(x1 | x2), πf2(x2)) = T (πf2|f1(x2 | x1), πf1(x1)).

Proof. The equivalence of (i), (ii) and (iii) follows immediately from Corollary 2.5. The equiv-
alence of (ii) and (iv) follows from Part I, Theorem 8.2 and Definition 8.3. Let us now prove
that (iv) and (v) are equivalent. First, assume that (iv) holds. Consider an arbitrary A1 in R1.
Then by definition and by assumption, for any A2 in R2,

(T ) –
∫

A2

Πf1|f2(A1 | ·)dΠf2 = Π(f1,f2)(A1 ×A2) = T (Πf1(A1), Πf2(A2)) = (T ) –
∫

A2

Πf1(A1)dΠf2 ,

also taking into account Part I, Eq. (6). We conclude from Part I, Proposition 6.4(iii) that
(v) holds. Conversely, assume that (v) holds. Consider arbitrary A1 in R1 and A2 in R2. By
definition, and taking into account the assumption and Part I, Proposition 6.4(iii),

Π(f1,f2)(A1 ×A2) = (T ) –
∫

A2

Πf1|f2(A1 | ·)dΠf2 = (T ) –
∫

A2

Πf1(A1)dΠf2 = T (Πf1(A1), Πf2(A2)),

also taking into account Part I, Eq. (6). We conclude that (ii) holds, and therefore also, from
the discussion above, that (iv) holds.

The proof of the equivalence of (iv) and (vi) is completely analogous. Let us therefore
complete this proof by showing that (iii) and (vii) are equivalent. For any x1 in X1 and x2 in X2
we have indeed, taking into account Part II, Eq. (26), that π(f1,f2)(x1, x2) = T (πf1(x1), πf2(x2)) is
equivalent to T (πf1(x1), πf2(x2)) = T (πf1|f2(x1 | x2), πf2(x2)) = T (πf2|f1(x2 | x1), πf1(x1)).

3 INDEPENDENCE OF FUZZY EVENTS

Formally, fuzzy variables are special possibilistic variables (see also Part I, section 5). In defining
the possibilistic independence of fuzzy variables, we may therefore make use of Definition 2.4.
Corollary 3.2 gives us a number of criteria for this new form of independence. In this section,
we use the notations established in Part I, section 5.

Definition 3.1. Consider an nonempty family {hj | j ∈ J} of (L,≤)-fuzzy variables in (Ω,RΩ).
This family is called (ΠΩ, T )-independent iff the family {hj | j ∈ J} of possibilistic variables in
(L, ℘(L)) is (ΠΩ, T )-independent. In this case we also say that the fuzzy variables hj , j ∈ J ,
are (ΠΩ, T )-independent. Whenever we do not want to mention the (L,≤)-possibility measure
ΠΩ and/or the t-norm T explicitly, we simply speak of (possibilistic) independence instead of
(ΠΩ, T )-independence.

Corollary 3.2. The following propositions are equivalent.

(i) The family {hj | j ∈ J} of (L,≤)-fuzzy variables in (Ω,RΩ) is (ΠΩ, T )-independent.

(ii) For any n in N \ {0}, for arbitrary and different j1, . . . , jn in J and for any Bk in ℘(L),
k = 1, . . . , n:

Γ(hj1 ,...,hjn )(B1 × · · · ×Bn) = Tn
k=1Γhjk

(Bk).
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(iii) For any n in N \ {0}, for arbitrary and different j1, . . . , jn in J and for any λk in L,
k = 1, . . . , n:

γ(hj1 ,...,hjn )(λ1, . . . , λn) = Tn
k=1γhjk

(λk).

Proof. This corollary is a special case of Corollary 2.5.

Theorem 3.3 provides a criterion for the possibilistic independence of a finite number of
fuzzy variables. The formal analogy between these results and the well-known formulas for real
stochastic variables – the counterparts of these fuzzy variables – in probability theory is striking
(see, for instance, [Burrill, 1972] Theorem 11-4A and corollary).

Theorem 3.3. The following statements are equivalent.

(i) The (L,≤)-fuzzy variables h1, . . . , hm, m ∈ N \ {0}, in (Ω,RΩ) are (ΠΩ, T )-independent.

(ii) For any (B1, . . . , Bm) in ℘(L)m, Γ(h1,... ,hm)(B1 × · · · ×Bm) = Tm
k=1Γhk(Bk).

(iii) For any (λ1, . . . , λm) in Lm, γ(h1,... ,hm)(λ1, . . . , λm) = Tm
k=1γhk(λk).

Proof. It is easily proven that (ii) and (iii) are equivalent. Let us therefore concentrate on the
equivalence of (i) and (ii). Corollary 3.2 already tells us that (ii) follows from (i). Let us therefore
show that (i) follows from (ii). To this end, assume that (ii) holds, and consider an arbitrary n
with 1 ≤ n ≤ m. Also consider arbitrary and different j1, . . . , jn in {1, . . . , m} and arbitrary
(Bj1 , . . . , Bjn) in ℘(L). Then, taking into account Corollary 3.2, it must be shown that

Γ(hj1 ,...,hjn )(Bj1 × · · · ×Bjn) = Tn
k=1Γhjk

(Bjk).

There are two possibilities. Either n = m, in which case the string of numbers j1 . . . jn is a
permutation of the string 1 . . . m. For such a permutation it is easily verified that on the one
hand Γ(hj1 ,...,hjn)(Bj1 × · · · × Bjn) = Γ(h1,... ,hm)(B1 × · · · ×Bm). On the other hand, we clearly
also have that, taking into account the commutativity of T , Tn

k=1Γhjk
(Bjk) = Tm

k=1Γhk(Bk). It
now follows from (ii) that Γ(h1,... ,hm)(B1 × · · · ×Bm) = Tm

k=1Γhk(Bk), whence indeed, taking
into account the equalities derived above, Γ(hj1 ,...,hjn)(Bj1 × · · · ×Bjn) = Tn

k=1Γhjk
(Bjk).

Or1 we have that n < m. We shall denote the elements of {1, . . . , m} \ {j1, . . . , jn} as jn+1,
. . . , jm. Once again, the string of numbers j1 . . . jm is a permutation of the string 1 . . . m. For
the choice Bjk = L, k = n + 1, . . . ,m, we may write, since for these k also h−1

jk
(Bjk) = Ω,

Γ(h1,... ,hm)(B1 × · · · ×Bm) = ΠΩ(
m
⋂

k=1

h−1
k (Bk))

= ΠΩ(
m
⋂

k=1

h−1
jk

(Bjk))

= ΠΩ(
n
⋂

k=1

h−1
jk

(Bjk))

= Γ(hj1 ,...,hjn )(Bj1 × · · · ×Bjn).

1When m = 1 this case can be excluded.
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On the other hand, taking into account the commutativity and associativity of T ,

Tm
k=1Γhk(Bk) = Tm

k=1ΠΩ(h−1
k (Bk))

= Tm
k=1ΠΩ(h−1

jk
(Bjk))

= T (Tn
k=1ΠΩ(h−1

jk
(Bjk)), Tm

k=n+1ΠΩ(h−1
jk

(L)))

= T (Tn
k=1ΠΩ(h−1

jk
(Bjk)), Tm

k=n+11L)

= Tn
k=1ΠΩ(h−1

jk
(Bjk))

= Tn
k=1Γhjk

(Bjk).

From the assumption, we furthermore deduce that Γ(h1,... ,hm)(B1 × · · · ×Bm) = Tm
k=1Γhk(Bk).

Using the equalities derived above, we find that, Γ(hj1 ,...,hjn )(Bj1 × · · · ×Bjn) = Tn
k=1Γhjk

(Bjk).
We conclude that the (L,≤)-fuzzy variables h1, . . . , hm in (Ω,RΩ) are (ΠΩ, T )-independent.

Theorem 3.4 also has a probabilistic counterpart: the expectation of a product of indepen-
dent real stochastic variables equals the product of the expectations of those variables (see, for
instance, [Burrill, 1972] Theorem 11-4C). For the notations, I refer to Part I, Eq. (10).

Theorem 3.4. If the (L,≤)-fuzzy variables h1, . . . , hm, m ∈ N \ {0}, in (Ω,RΩ) are (ΠΩ, T )-
independent, we have that

(ΠΩ)T (Tm
k=1hk) = Tm

k=1(ΠΩ)T (hk).

Proof. It is easily verified that Tm
k=1hk is RΩ-measurable. Furthermore, if we denote any asso-

ciative extension of T also by T , we have by definition that

(ΠΩ)T (Tm
k=1hk) = (T ) –

∫

Ω
Tm

k=1hkdΠΩ

= (T ) –
∫

Ω
T ◦ (h1, . . . , hm)dΠΩ

= (T ) –
∫

Lm
TdΓ(h1,... ,hm)

= sup
(λ1,... ,λm)∈Lm

T (T (λ1, . . . , λm), γ(h1,... ,hm)(λ1, . . . , λm)),

also taking into account Part I, Theorem 5.5 and Part I, Eq. (5). From the assumption and
Theorem 3.3, we deduce that, also taking into account the associativity and the commutativity
of T ,

= sup
(λ1,... ,λm)∈Lm

T (Tm
k=1λk, Tm

k=1γhk(λk))

= sup
(λ1,... ,λm)∈Lm

Tm
k=1T (λk, γhk(λk))

= sup
λ1∈L

. . . sup
λm∈L

Tm
k=1T (λk, γhk(λk))

= Tm
k=1 sup

λk∈L
T (λk, γhk(λk)),

whence, taking into account Part I, Corollary 5.6,

= Tm
k=1(ΠΩ)T (hk).
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We conclude this section with a number of results that express the relationship between the
possibilistic independence of possibilistic and fuzzy variables. For the probabilistic counterpart
of Theorem 3.6 I refer to [Burrill, 1972] Theorem 15-1J(e), and a counterpart for Theorem 3.7
can be found in [Burrill, 1972] Theorem 15-3C(b).

Lemma 3.5. Let h and g be (L,≤)-fuzzy variables in (X,RΩ). If the fuzzy variables h and
g in (Ω,RΩ) are (ΠΩ, T )-independent, then the fuzzy variables h and χg−1(B) in (Ω,RΩ) are
(ΠΩ, T )-independent, for any B in ℘(L).

Proof. Let λ1 and λ2 be arbitrary elements of L and let B be an arbitrary subset of ℘(L). Then

χ−1
g−1(B)({λ2}) =















g−1(B) ; λ2 = 1L

g−1(coB) ; λ2 = 0L

∅ ; elsewhere,

and by definition also

γχg−1(B)
(λ2) = ΠΩ(χ−1

g−1(B)({λ2})) =















ΠΩ(g−1(B)) = Γg(B) ; λ2 = 1L

ΠΩ(g−1(coB)) = Γg(coB) ; λ2 = 0L

0L ; elsewhere.

By definition, we also have that

γ(h,χg−1(B))
(λ1, λ2) = ΠΩ(h−1({λ1}) ∩ χ−1

g−1(B)({λ2})),

and, taking into account the equalities derived above,

=















Γ(h,g)({λ1} ×B) ; λ2 = 1L

Γ(h,g)({λ1} × coB) ; λ2 = 0L

0L ; elsewhere.

Assume that h and g are (ΠΩ, T )-independent. It now follows from Theorem 3.3 that

=















T (γh(λ1),Γg(B)) ; λ2 = 1L

T (γh(λ1), Γg(coB)) ; λ2 = 0L

0L ; elsewhere,

and once again taking into account the equalities derived above

= T (γh(λ1), γχg−1(B)
(λ2)).

From Theorem 3.3 we deduce that h and χg−1(B) are (Π, T )-independent.

Theorem 3.6. Let the t-norm T be weakly invertible, so that we may rightfully speak of con-
ditional (L,≤, T )-possibility. Let h and g be (L,≤)-fuzzy variables in (Ω,RΩ). If h and g are
(ΠΩ, T )-independent,

ΠΩ(h | g = ·) (Γg,T )
= (ΠΩ)T (h).
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Proof. Consider an arbitrary B in ℘(L). By definition, and taking into account Part I, Eq. (8)
and T (χg−1(B), h) = χg−1(B) _ h,

(T ) –
∫

B
ΠΩ(h | g = ·)dΓg = (T ) –

∫

g−1(B)
hdΠΩ,

= (T ) –
∫

Ω
T (χg−1(B), h)dΠΩ.

Taking into account the previous lemma, Theorem 3.4 and Part I, Eqs.(6) and (9), we find that

= T
(

(T ) –
∫

Ω
χg−1(B)dΠΩ, (T ) –

∫

Ω
hdΠΩ

)

= T (ΠΩ(g−1(B)), (ΠΩ)T (h))

= T (Γg(B), (ΠΩ)T (h))

= (T ) –
∫

B
(ΠΩ)T (h)dΓg.

Proposition 6.4(iii) in Part I now tells us that the proof is complete.

Theorem 3.7. Let the t-norm T be weakly invertible, so that we may rightfully speak of condi-
tional (L,≤, T )-possibility. Let h and g be (L,≤)-fuzzy variables in (Ω,RΩ). Then h and g are
(ΠΩ, T )-independent if and only if

(∀λ ∈ L)(γh|g(λ | ·)
(Γg,T )
= γh(λ)), (11)

or equivalently,
(∀(λ, µ) ∈ L2)(T (γh|g(λ | µ), γg(µ)) = T (γh(λ), γg(µ)).

Proof. Assume on the one hand that h and g are (ΠΩ, T )-independent. It follows from Lemma 3.5
that, for any λ in L, χh−1({λ}) and g are (ΠΩ, T )-independent. Therefore, (11) follows from the
previous theorem, taking into account (see also Part II, Definition 3.6)

ΠΩ(χh−1({λ}) | g = ·) = ΠΩ(h−1({λ}) | g = ·) = γh|g(λ | ·),

and (see also Part I, Eq. (9))

(ΠΩ)T (χh−1({λ})) = (T ) –
∫

Ω
χh−1({λ})dΠΩ = ΠΩ(h−1({λ})) = γh(λ).

On the other hand, assume that (11) holds, whence for any λ and µ in L, T (γh|g(λ | µ), γg(µ)) =
T (γh(λ), γg(µ)). By Part II, Theorem 3.8(ii), we find T (γh|g(λ | µ), γg(µ)) = γ(h,g)(λ, µ), whence
finally γ(h,g)(λ, µ) = T (γh(λ), γg(µ)). Theorem 3.3 tells us that h and g are (ΠΩ, T )-independent.

4 INDEPENDENCE OF EVENTS

A fuzzy variable in (Ω,RΩ) is a generalization of a RΩ-measurable subset of Ω: an arbitrary
element A of RΩ can be identified with the (L,≤)-fuzzy variable χA in (Ω,RΩ). In Definition 4.1
we use this identification to introduce the possibilistic independence of events. In Theorem 4.2 we
deduce a criterion for this independence (probabilistic counterpart: [Burrill, 1972] section 11-4).
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Definition 4.1. Consider a family {Aj | j ∈ J} of elements of RΩ. This family is called
(ΠΩ, T )-independent iff the family {χAj | j ∈ J} of (L,≤)-fuzzy variables in (Ω,RΩ) is (ΠΩ, T )-
independent. In this case we also say that the elements Aj , j ∈ J , ofRΩ are (ΠΩ, T )-independent.
Whenever we do not want to mention the (L,≤)-possibility measure ΠΩ and/or the t-norm T
explicitly, we simply speak of (possibilistic) independence instead of (ΠΩ, T )-independence.

Theorem 4.2. A family {Aj | j ∈ J} of elements of RΩ is (ΠΩ, T )-independent if and only if

(A) for any n in N \ {0}, for arbitrary and different j1, . . . , jn in J , for any Fk in
{Ajk , coAjk}, k = 1, . . . , n, ΠΩ(

⋂n
k=1 Fk) = Tn

k=1ΠΩ(Fk).

Proof. The family {Aj | j ∈ J} of elements of RΩ is, taking into account Corollary 3.2, (ΠΩ, T )-
independent if and only if for any n in N \ {0}, for arbitrary and different j1, . . . , jn in J and
for any Bk in ℘(L), k = 1, . . . , n, ΠΩ(

⋂n
k=1 χ−1

Ajk
(Bk)) = Tn

k=1ΠΩ(χ−1
Ajk

(Bk)). Now we have for
k = 1, . . . , n that

χ−1
Ajk

(Bk) =



























Ajk ; 1L ∈ Bjk and 0L 6∈ Bjk

coAjk ; 0L ∈ Bjk and 1L 6∈ Bjk

Ω ; 1L ∈ Bjk and 0L ∈ Bjk

∅ ; 1L 6∈ Bjk and 0L 6∈ Bjk .

This implies that the family {Aj | j ∈ J} is (ΠΩ, T )-independent if and only if

(B) for any n in N \ {0}, for arbitrary and different j1, . . . , jn in J , for any Gk in
{Ajk , coAjk , ∅, Ω}, k = 1, . . . , n, ΠΩ(

⋂n
k=1 Gk) = Tn

k=1ΠΩ(Gk).

It is clear that (A) follows from (B). The proof is therefore complete if we can show that (B)
follows from (A). Assume that (A) holds. Consider an arbitrary n in N \ {0}, arbitrary and
different j1, . . . , jn in J and arbitrary Gk in {Ajk , coAjk , ∅, Ω}. It must be shown that

ΠΩ(
n
⋂

k=1

Gk) = Tn
k=1ΠΩ(Gk). (12)

For the choice of Gk, k = 1, . . . , n, made above, we now define

M1 = { k | k ∈ {1, . . . , n} and Gk = ∅ }
M2 = { k | k ∈ {1, . . . , n} and Gk = Ω }
M3 = {1, . . . , n} \ (M1 ∪M2).

When M1 6= ∅, (12) trivially holds. Let us therefore assume that M1 = ∅. In this case there are
two possibilities. The first is that M2 6= ∅. If furthermore M3 = ∅, this implies that M = M2,
and (12) can therefore be rewritten as ΠΩ(

⋂n
k=1 Ω) = Tn

k=1ΠΩ(Ω). Since ΠΩ is normal, this is
equivalent to the trivially true proposition ‘1L = 1L’. Let us therefore assume that M3 6= ∅.
Eq. (12) can in this case, with obvious notations, be rewritten as

ΠΩ((
⋂

k∈M3

Gk) ∩ (
⋂

k∈M2

Gk)) = T (Tk∈M3ΠΩ(Gk), Tk∈M2ΠΩ(Gk)),

which is clearly equivalent to

ΠΩ(
⋂

k∈M3

Gk) = Tk∈M3ΠΩ(Gk). (13)
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Since (∀k ∈ M3)(Gk ∈ {coAjk , Ajk}), it follows from (A) that in this case (13) and therefore
also (12) holds.

The second possibility is that M2 = ∅. We then have that Gk ∈ {coAjk , Ajk}, k ∈ {1, . . . , n},
and therefore (12) immediately follows from (A).

In proposition 4.3 we formulate an independence criterion for two events. That this criterion
has four conditions instead of one in its well-known probabilistic counterpart, is necessary in
order to make sure that it would be invariant under the complementation of the events involved.
This is also apparent from Proposition 4.4. Note that these results generalize Eq. (6).

Proposition 4.3. Two elements O1 and O2 of RΩ are (ΠΩ, T )-independent if and only if






















ΠΩ(O1 ∩O2) = T (ΠΩ(O1), ΠΩ(O2))

ΠΩ(O1 ∩ coO2) = T (ΠΩ(O1), ΠΩ(coO2))

ΠΩ(coO1 ∩O2) = T (ΠΩ(coO1),ΠΩ(O2))

ΠΩ(coO1 ∩ coO2) = T (ΠΩ(coO1),ΠΩ(coO2)).

Furthermore, for any O in RΩ, ∅, O and Ω are (ΠΩ, T )-independent.

Proposition 4.4. Let {Aj | j ∈ J} be a family of elements of RΩ and let {A′j | j ∈ J} be
a family of elements of RΩ, obtained by the substitution for their complements of an arbitrary
number of elements of the first family. Then the family {Aj | j ∈ J} is (ΠΩ, T )-independent if
and only if the family {A′j | j ∈ J} is (ΠΩ, T )-independent.

Proof. Immediately from Theorem 4.2 and the invariance of the independence criterion (A) for
complementation.

It should be noted that this definition of the possibilistic independence of events is different
from Nahmias’ definition of mutual unrelatedness, because it is invariant under complementa-
tion, as the previous proposition indicates. In Example 2.3 we have shown that this is not the
case for Nahmias’ definition.

Also remark that this invariance follows from the definition of the possibilistic independence
of fuzzy variables, and therefore indirectly from that of possibilistic variables. Nahmias’ un-
relatedness for his type of fuzzy variables is a special case of the definition of the possibilistic
independence of possibilistic variables given here. Furthermore, the ‘trick’ we use to convert the
independence of fuzzy events into the independence of events is precisely the identification of
an event with its characteristic mapping – a fuzzy event. In probability theory, an analogous
approach is followed [Burrill, 1972].

Finally, consider an arbitrary element A of RΩ. Taking into account Proposition 4.3, we find
that the events A and A are (ΠΩ, T )-independent if and only if















T (ΠΩ(A), ΠΩ(A)) = ΠΩ(A)

T (ΠΩ(coA), ΠΩ(coA)) = ΠΩ(coA)

T (ΠΩ(A), ΠΩ(coA)) = 0L.

If we consider, for instance, (L,≤) = ([0, 1],≤) and T = min, this may be rewritten as
min(ΠΩ(A),ΠΩ(coA)) = 0, or equivalently, ΠΩ(A) = 0 or ΠΩ(coA) = 0, which is compara-
ble to the probabilistic case. These remarks indicate that the approach described here solves the
problems associated with Nahmias’ definition of unrelatedness, discussed in the introduction.
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In the following theorem we show that there exists an even closer relationship between the
independence of possibilistic variables, fuzzy events and events, than their definitions would
make us suspect. Let us borrow the notations of Theorem 2.6.

Theorem 4.5. The following statements are equivalent.

(i) f1 and f2 are (ΠΩ, T )-independent.

(ii) For every h1 in GR1
(L,≤)(X1) and h2 in GR2

(L,≤)(X2), the cylindric extensions h1 and h2 to
X1 ×X2 are (Π(f1,f2), T )-independent.

(iii) For every A1 in R1 and A2 in R2, A1 ×X2 and X1 ×A2 are (Π(f1,f2), T )-independent.

Proof. We give a circular proof. For a start, let us show that (i) implies (ii). Assume that f1
and f2 are (ΠΩ, T )-independent. Consider an arbitrary h1 in GR1

(L,≤)(X1) and an arbitrary h2 in

GR2
(L,≤)(X2). Clearly, the cylindric extensions h1 and h2 to X1×X2 are R1×R2-measurable (see

also Part I, Proposition 8.8(i)). By definition, for any λ1 and λ2 in L,

γ(h1,h2)(λ1, λ2) = Π(f1,f2)((h1, h2)−1({(λ1, λ2)}))

= Π(f1,f2)(h1
−1({λ1}) ∩ h2

−1({λ2}))
= Π(f1,f2)(h

−1
1 ({λ1})×X2 ∩X1 × h−1

2 ({λ2}))
= Π(f1,f2)(h

−1
1 ({λ1})× h−1

2 ({λ2}))

and, taking into account the assumption and Theorem 2.6,

= T (Πf1(h
−1
1 ({λ1})),Πf2(h

−1
2 ({λ2})))

and, taking into account Part II, Proposition 4.3(i) and (ii),

= T (Π(f1,f2)(h
−1
1 ({λ1})×X2), Π(f1,f2)(X1 × h−1

2 ({λ2})))

= T (Π(f1,f2)(h1
−1({λ1})), Π(f1,f2)(h2

−1({λ2})))
= T (γh1

(λ1), γh2
(λ2)).

From Theorem 3.3 we deduce that h1 and h2 are (Π(f1,f2), T )-independent.
Next, we prove that (iii) follows from (ii). Assume that (ii) holds. Consider arbitrary A1

in R1 and A2 in R2, and the corresponding (L,≤)-fuzzy variables χA1 in (X1,R1) and χA2

in (X2,R2). Taking into account (ii), their cylindric extensions χA1 and χA2 are (Π(f1,f2), T )-
independent. Since furthermore χA1 = χA1×X2 and χA2 = χX1×A2 , it follows by definition that
A1 ×X2 and X1 ×A2 are (Π(f1,f2), T )-independent.

To conclude the proof, it must be shown that (i) follows from (iii). Assume that (iii) holds.
Consider an arbitrary (x1, x2) in X1 ×X2. By assumption, [x1 ]R1 ×X2 and X1 × [ x2 ]R2 are
(Π(f1,f2), T )-independent, and Theorem 4.2 in particular implies that

Π(f1,f2)([ x1 ]R1 ×X2 ∩X1 × [x2 ]R2) = T (Π(f1,f2)([ x1 ]R1 ×X2), Π(f1,f2)(X1 × [x2 ]R2))

whence, by Part II, Proposition 4.3(i) and (ii), π(f1,f2)(x1, x2) = T (πf1(x1), πf2(x2)). From
Theorem 2.6 it follows that (i) holds.
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5 AN EXAMPLE: CLASSICAL POSSIBILITY

In the previous sections, I have shown that the definition of possibilistic independence studied
here is an improvement of the existing definitions from the formal mathematical point of view:
not only does there exist a close relation between the independence of possibilistic variables
and the independence of events, but also in the well-known special case studied by Nahmias a
measurable set is not as a rule independent of itself.

In this section, I argue that, at least in one special case, this definition is also meaningful
from the interpretational point of view. To do so, let us study its meaning in classical, two-valued
possibility. We therefore choose, as in Part II, subsection 3.4, (L,≤) = ({0, 1},≤), T = ∧ and
ΠΩ = ΠA, with A an arbitrary but fixed element of RΩ \ {∅}. More explicitly, for any B in RΩ:

ΠA(B) =

{

1 ; A ∩B 6= ∅
0 ; A ∩B = ∅,

For a discussion of the meaning of the possibility measure ΠA, I refer to Part II, subsection 3.4.
For any B in RΩ, we call B necessary iff ΠA(coB) = 0, impossible iff ΠA(B) = 0 and uncertain
otherwise, i.e., iff ΠA(B) = ΠA(coB) = 1.

Let us first look for an interpretation of the (ΠA,∧)-independence of two arbitrary events
B and C in RΩ. According to Proposition 4.3, a necessary and sufficient condition for the
independence of B and C is























ΠA(B ∩ C) = ΠA(B) ∧ΠA(C)

ΠA(coB ∩ C) = ΠA(coB) ∧ΠA(C)

ΠA(B ∩ coC) = ΠA(B) ∧ΠA(coC)

ΠA(coB ∩ coC) = ΠA(coB) ∧ΠA(coC).

(14)

Let us now turn (14) into an equivalent form that is more easily interpretable. For any D and
E in RΩ, it is easily proven that the statement ‘ΠA(D ∩E) = ΠA(D) ∧ΠA(E)’ is equivalent to
‘A ∩D ∩E 6= ∅ or A ∩D = ∅ or A ∩ coD = ∅ or A ∩E = ∅ or A ∩ coE = ∅’. This implies, after
some elementary set theoretic manipulations, that B and C are (ΠA,∧)-independent if and only
if

ΠA(B) = 1
ΠA(C) = 1

ΠA(coB) = 1
ΠA(coC) = 1



















⇒



















A ∩B ∩ C 6= ∅
A ∩ coB ∩ C 6= ∅
A ∩B ∩ coC 6= ∅
A ∩ coB ∩ coC 6= ∅.

This means that on the one hand the events B and C are possibilistically independent as soon as
one of them is impossible or necessary. On the other hand, whenever both events are uncertain,
they are possibilistically independent if and only if

A ∩ C1 6= ∅, A ∩ C2 6= ∅, A ∩ C3 6= ∅, A ∩ C4 6= ∅, (15)

where the events C1 = B ∩C, C2 = coB ∩C, C3 = B ∩ coC and C4 = coB ∩ coC are called the
constituents of B and C (see, for instance, [de Finetti, 1974]). The constituents different from ∅
make up a partition of Ω.
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Let us now assume that the occurrence of B and C is possible but not necessary – and
therefore uncertain –, and look for an interpretation of (15). From this assumption, we easily
deduce that

A 6⊆ C1, A 6⊆ C2, A 6⊆ C3, A 6⊆ C4. (16)

Indeed, assume that for instance A ⊆ C3, or equivalently, ∅ = A ∩ co(B ∩ coC) = (A ∩ coB) ∪
(A ∩ C). This implies that A ∩ coB = ∅ and A ∩ C = ∅, which contradicts our assumption
that B and C are uncertain. We may therefore conclude that in this case (15) holds if and only
if the constituents C1, C2, C3 and C4 are uncertain events. In this case, the uncertain events
B and C are in the literature called logically independent (see, for instance, [de Finetti, 1974]
section 2.7). This logical independence means that additional knowledge about the occurrence of
either event B or C can on no account change the existing uncertainty about the occurrence of
the other event.

To illustrate this, let us assume that (15) holds and that we know that the event B occurs. We
now ask ourselves if this additional information can remove the uncertainty about the occurrence
of C. This question must be answered in the negative: taking into account (15), we have that
A∩B ∩C 6= ∅ and A∩B ∩ coC 6= ∅, which means that a priori both C and coC are uncertain.
The uncertainty about the occurrence of C is preserved due to (15).

We may therefore conclude that two arbitrary events B and C are (ΠA,∧)-independent if
and only if at least one of them is either necessary or impossible, or, whenever they are both
uncertain, if and only if they are logically independent.

Let us now turn to the (ΠA)-independence of two possibilistic variables, and find out whether
this also has a simple interpretation. We again borrow the notations from Theorem 2.6. Let
us first turn the criterion for the (ΠA,∧)-independence of the possibilistic variables f1 and f2,
given in Theorem 2.6(iii),

(∀(x1, x2) ∈ X1 ×X2)(π(f1,f2)(x1, x2) = πf1(x1) ∧ πf2(x2)) (17)

into a form that is more readily interpreted. It is easily shown that, using the notations in-
troduced in Part I, Eq. (4), Πf1 = ΠpR1(f1(A)) and πf1 = χpR1(f1(A)); Πf2 = ΠpR2(f2(A)) and
πf2 = χpR2(f2(A)); Π(f1,f2) = ΠpR1×R2 ((f1,f2)(A)) and π(f1,f2) = χpR1×R2 ((f1,f2)(A)). These formulas
have a natural interpretation: since we know that in the universe RΩ the event A occurs, we also
know that in the universe X1 the event pR1(f1(A)) occurs. It should not surprise us that we find
pR1(f1(A)) instead of f1(A): we have no guarantee that f1(A) ∈ R1, whereas pR1(f1(A)) is the
smallest R1-measurable set including f1(A). For f2 and (f1, f2) analogous interpretations can
be given. It turns out that there is a clear correspondence between what we would intuitively
expect, and what the theory, using projections and transformations of possibility measures, tells
us.

The criterion (17) can now be rewritten as

pR1×R2((f1, f2)(A)) = pR1(f1(A))× pR2(f2(A)). (18)

Let us now try and interpret this. We first observe that a number of straightforward manipula-
tions allow us to derive the following statement from this criterion:

(∀A1 ∈ R1)(A1 ∩ pR1(f1(A)) 6= ∅ ⇒ pR2(f2(A)) ⊆ pR2(f2(f−1
1 (pR1(f1(A)) ∩A1)))).

(19)

16



Now, assume that f1 and f2 are (ΠA,∧)-independent, so that we know that (19) holds. Assume
furthermore that we have additional information about the value that f1 assumes in X1, say,
that f1 with certainty assumes a value in the set A1 in R1, or, in other words, that the event A1
occurs. Is it possible to deduce from this fact information about the value which f2 assumes in
X2, that is more specific than the information we already have, namely, that f2 with certainty
takes a value in pR2(f2(A))? Let us now show that this is impossible, due to (19). We know on
the one hand that f1 with certainty assumes a value in pR1(f1(A))∩A1. In order that the extra
information would make sense, it must be that pR1(f1(A)) ∩ A1 6= ∅. Let us assume that this
is indeed the case. Then, by combining both chunks of information, we find that f1 must take
a value in pR1(f1(A)) ∩ A1, which implies that the event f−1

1 (pR1(f1(A)) ∩ A1) in RΩ occurs.
We may therefore deduce that f2 assumes a value in f2(f−1

1 (pR1(f1(A))∩A1)). Since, however,
only the elements of R2 are ‘measurable’ (or visible to us), we may actually only deduce from
this that f2 must assume a value in pR2(f2(f−1

1 (pR1(f1(A)) ∩A1))). But (19) tells us that

pR2(f2(A)) ⊆ pR2(f2(f−1
1 (pR1(f1(A)) ∩A1))),

which means that the additional information about the value assumed by f1 gives us additional
information about the value assumed by f2 that can never be more restrictive than the informa-
tion already contained in Πf2 . To put it more succinctly, additional knowledge about the values
assumed by either one of both possibilistic variables cannot reduce the uncertainty about the
values assume by the other. If this is the case, the variables f1 and f2 are called logically inde-
pendent (see, for instance, [de Finetti, 1974] subsection 2.7.5 concerning the logical independence
of stochastic variables).

We conclude that possibilistic independence for classical possibility measures is intricately
linked with the notion of logical independence.

6 CONCLUSION

The results in paper tell us that it is possible to develop a measure- and integral-theoretic
account of possibilistic independence using possibility integrals and the material given in Parts I
and II of this series of three papers. It turns out that the formal analogy with the treatment of
stochastic independence can be preserved, and that this approach generalizes existing results in
the literature, while at the same time removing some inconsistencies.

This paper concludes a series of three on the measure- and integral-theoretic aspects of
possibility theory. I have tried to show that it is possible to use the possibility integral to
formally develop a possibility theory in very much the same way as a measure- and integral
account of probability theory can be given using Lebesgue integrals. An overview of the analogy
between probability theory and this account of possibility theory is given in Table 1.

The results discussed in this series seem to indicate that at least formally, the fuzzy in-
tegral is a good candidate for the title of the possibility integral, that is, an integral ideally
suited for possibility measures. Whether its claims also receive corroboration from semantical
considerations, is the subject of current research.
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probability theory possibility theory
σ-field ample field
unit interval [0, 1] complete lattice (L,≤)
addition supremum
multiplication t-seminorm, t-norm
probability measure possibility measure

(σ-additivity) (supitivity)
Lebesgue integral seminormed fuzzy integral

(= possibility integral)
stochastic variable possibilistic variable
real stochastic variable fuzzy variable

(= measurable fuzzy set)
probability distribution function possibility distribution function
expectation of a real stochastic variable possibility of a fuzzy variable
almost everywhere equality almost everywhere equality

(modified, more general form)
product probability measure product possibility measure
conditional probability conditional possibility
stochastic independence possibilistic independence

Table 1: Overview of the formal analogy between probability and possibility theory
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