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Abstract: This paper presents lower and upper probabilities for the reliability of k-out-of-m
systems, which include series and parallel systems, and of series systems with independent
k;i-out-of-m; subsystems, for which optimal redundancy allocation is also presented in case of
zero-failure testing. First, attention is restricted to k-out-of-m systems with exchangeable
components. The lower and upper probabilities for successful functioning of the system are
based on the nonparametric predictive inferential (NPI) approach for Bernoulli data. In this
approach, it is assumed that test data are available on the components, and that the future
components to be used in the system are exchangeable with these. Thereafter, systems are
considered that consist of a series of independent subsystems, with subsystem i a k;-out-of-m;
system consisting of exchangeable components. For such systems, an algorithm for optimal
redundancy allocation after zero-failure testing is presented. A particularly attractive feature of
NPI in reliability, with lower and upper probabilities, is that data containing zero failures can be
dealt with in an attractive manner.

Keywords: k-out-of-m systems, lower and upper probabilities, nonparametric predictive
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1 INTRODUCTION

During the last decade, imprecise probabilistic
methods in reliability have received increasing
attention; concise overviews are presented by Coolen
(1] and by Coolen and Utkin [2], while a detailed
introduction and overview is given by Utkin and
Coolen [3]. These methods are based on generalized
uncertainty quantifications via lower and upper
probabilities, also known as the theory of imprecise
probability [4] or interval probability [5, 6]. During
this period, Coolen and several collaborators (see
reference [7] for a brief overview) have developed a
novel statistical theory entitled nonparametric pre-
dictive inference (NPI), with an early overview of
possible applications of NPI in reliability presented
by Coolen et al. [8]. Recently presented applications
of NPI to reliability problems include reliability
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demonstration for failure-free periods [9], (opportu-
nity-based) age replacement [10, 11], comparison of
success—failure data [12], probabilistic safety assess-
ment in case of zero failures [13], and prediction of
not yet observed failure modes [14].

A traditional problem considered in reliability the-
ory is the assessment of system reliability [15], where
k-out-of-m systems, also called ‘voting systems’, have
received particular attention. These are systems that
consist of m exchangeable components (often the
confusing term ‘identical components’ is used), such
that the system functions if and only if at least k of its
components function, with series systems (k=m) and
parallel systems (k=1) as special cases. Utkin [16]
considered such systems for situations with incom-
plete information, using imprecise probability to
quantify uncertainty. In this present paper, Coolen’s
NPI method for Bernoulli data is applied to k-out-of-
m systems, where it is assumed that inferences on
system reliability are based on information from tests
on n components, which are exchangeable with the
components in the system considered. Throughout,
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only situations are considered where components,
and therefore also the system, either function or not
when called upon, so failure behaviour over time is
not considered. Generally, it is assumed that a test of n
exchangeable components reveals that s of them
function and n — s fail, and NPI is used to derive the
lower and upper probabilities for the event that the k-
out-of-m system, made up of components exchange-
able with those n tested, functions. For the extension
to series of independent k;-out-of-m; subsystems, in
sections 5 and 6, the same scenario is assumed, with
the components per subsystem exchangeable, and
with tests of n; components exchangeable with those
of subsystem i revealing s; failures.

Section 2 presents a brief overview of NPI, and
particularly, of NPI for Bernoulli random quantities,
as used later in this paper. Section 3 presents the main
results on NPI for k-out-of-m systems, and these
results are illustrated and discussed via examples in
section 4. Section 5 extends this approach to systems
that are series of independent subsystems, with each
subsystem a k;-out-of-m; system with exchangeable
components. For such systems, the question of how
to allocate additional components to the subsystems
to increase redundancy, and to obtain a maximum
increase in system reliability, has received much
attention in the literature, and tends to be a complex
problem. In the NPI setting, however, it turns out that
this problem can easily be solved by applying an
algorithm that is presented in section 6. Section 7
provides some concluding remarks, including a brief
outline of related research challenges. The material in
section 3, with the illustrative examples in section 4,
was presented at the Mathematical Methods in
Reliability Conference in 2007 (Glasgow, UK), and a
short article with those results has appeared in a book
with special invited papers from that conference [17].

2 NONPARAMETRIC PREDICTIVE INFERENCE

In this section, results from Coolen [18] on NPI for
Bernoulli random quantities are presented, which are
based on a representation of Bernoulli data as out-
comes of an experiment similar to that used by Bayes
[19], with Hill’'s assumption A, (20, 21] used to derive
direct predictive probabilities [22, 23] for future
observations using available data. For detailed justifi-
cations of these results the reader is referred to refer-
ence [18]. The lower and upper probabilities presented
by Coolen [18] fit in the framework of NPI [7, 24],
hence, they will also be called NPI (-based) lower and
upper probabilities in this paper, and they have strong
internal consistency properties in the theory of interval
probability [6, 24] as can be proven similarly to the
proofs of such consistency properties for the more
general situation of multinomial data [25]. Due to

the use of A, in deriving these lower and upper
probabilities, they fit in a frequentist framework
of statistics, but can also be interpreted from a
Bayesian perspective [21, 26]. As they are conditional
lower and upper probabilities, which are introduced
without reference to probabilities for the uncondi-
tional events, they can be interpreted in a way similar
to Dempster’s ‘direct probabilities’ [22]. NPI is also
‘exactly calibrated’ in the frequentist sense of Lawless
and Fredette [27]. For further discussion of such
inferences, see Augustin and Coolen [24] and Coolen
[7]. The NPI approach for Bernoulli random quantities
[18] has been used for several other applications;
for example, for multiple comparisons of proportions
[28], where also particular attention has been paid
to reliability data with few or zero failures [12].

Suppose that there is a sequence of n+m
exchangeable Bernoulli trials, each with ‘success’ and
‘failure’ as possible outcomes, and data consisting of
s successes in n trials. Let Y{" denote the random
number of successes in trials 1 to n, then a sufficient
representation of the data for the inferences con-
sidered is Y{" = s, due to the assumed exchangeability
of all trials. Let Y,//[" denote the random number of
successes in trials n+1to n+m. Let R, = {ry,..., 1},
withl <t<m+land0<rn<nrn<...<r<m,and,
for ease of notation, define (**/*) = 0. Then, the NPI-
based upper probability [18] for the event Y,//[" € R;,
given data Y' = s, for s € {0,...,n}, is

-1
PRy =9 = (")

ST IO

The corresponding NPI lower probability is derived
via the conjugacy property [18]

P(Y,[" € R|Y' = 5) = 1 = P(Y;[[" € R{|Y[' = 5)

where R = {0, 1, ..., m}\R;. This conjugacy property
between these upper and lower probabilities is justi-
fied in reference [18], and agrees with the fact that
they are F-probabilities in Weichselberger’s theory of
interval probability [5, 6]. These lower and upper
probabilities also have attractive properties beyond
internal consistency, as the interval created by the
lower and upper probability for an event A always
contains the precise empirical probability for A as
based on the observed data, and the lower (upper)
probability increases (decreases) as a function of n,
for constant s/n [7].

3 NPI FOR k-OUT-OF-m SYSTEMS

In this section, the focus is on the lower and upper

probabilities for the event Y,?jl’” >k (for m>1) given
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the test results, as this event corresponds to successful
functioning of a k-out-of-m system following n tests
of components that are exchangeable with the m
components in the system considered. Given data
consisting of s successes from n components tested,
the NPI lower and upper probabilities for the event
that the k-out-of-m system functions successfully
are also denoted by P(m: k|n,s) and P(m: k|n,s)
respectively. From the upper probability for ;)" € R,
given in section 2 [18], the NPI upper probability
P(m : k|n,s) easily follows. For k € {1, 2,...,m} and
0 < s < n, this NPI upper probability equals

P(m : kln,s) = P(Y[" > k|Y] = s)

_ (n—;m)le—Ek) (n—sn—i—_nsl—k>
2 0 lﬂ )

and the NPI lower probability follows via the con-
jugacy property
P(m: kin,s) = P(Y) [ > k|Y]" =)

n+1
— 1P <k 1Y) =)
n+m AL sl —1
:]_—
( n ) [g( s—l)

()

For m =1, so considering a system consisting of just a
single component, the NPI upper and lower prob-
abilities for the event that the system functions suc-
cessfully are

501 . — 1 s+1
P(1:1|n,s) =PV} =1]Y]" =35) =
and

) _ 1_ .S
P(L: 1n,s) = PV = 1Y) =) = 2~

If the observed data are all successes, so s=n, or all
failures, so s =0, then the NPI upper probabilities are,
forall k e {1,...,m}

P(m:kin,n) =P(Y "> k|Y'=n)=1

n+1

P(m : k|n,0) = P(Y™" > k|Y" = 0)

n+1
_(n+m—k (n—|—rrL)71
N n n
and the NPI lower probabilities are,
ke{l,... m}
P(m : kin,n) = P(Y " > k|Y]' = n)

n+1
n+k—-1\/n+m
_1_< n )( n )
P(m : k|n,0) = P(Y}'}{" > k|Y{' = 0) = 0

For the two extreme cases of series and parallel
systems, with k=m and k=1, respectively, the NPI

for all

-1

upper and lower probabilities can be substantially
simplified to give the expressions below, which
actually provide insight into the NPI approach for
such systems. Representing corresponding lower and
upper probabilities for an event A by (P,P)(A), the
general results above are, for series systems

(P, P)(m : m|n,0) = <O,H %ﬂ)

-1
= rSs—1+j fr s+j
P, P)(m: mln,s) = —, -
(B P)om: mins) (H b
for0<s<n
- n
(P,P)(m:m|n,n) = (n+m’1>
and for parallel systems
— m
(B,P)(m:1[n,0) = (O’nJr—m)
— T n—S+]
P P(m:1n,s)=|1— —
(B.P)(m:1|ns) ( 115
m .
I—HLI,—H forO<s<n
i n+j

_ ) B m ]
(P,P)(m:1|n,n) = <1_En—+j,1>

In these expressions, a term ("J;l’")f1 for example, is

written as H]"l 1j/(n+]j), as the latter expression
provides more insight. For example, it is the value of
the NPI upper probability for successful functioning
of a series system when all the n components tested
failed, P(m:m|n,0). In this situation, when the m
components of the system are considered in
sequence, then the NPI upper probability for the first
to function, given the data, is 1/(n+1). If this first
component in the system were to function, then the
data of the n tested components would be used
together with this functioning first component, to
infer that the NPI upper probability for the event that
the second component in the system functions, given
that the first functions, is equal to 2/(n + 2), and so on
for all m components in sequence, with, for each
one, both the information from the test and from the
previous components of the system in this sequence
used. It is easily seen that this leads to P(m : m|n,0) =
]‘[}Z 1j/(n+j). The other expressions for these series
and parallel systems can be derived and interpreted via
similar direct considerations.

An important advantage of the use of lower and
upper probabilities in statistical inference occurs in
situations with the observations either all successes
or all failures, as inferences based on precise prob-
abilistic methods are typically not in agreement with
empirical probabilities in such cases. For example,
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after observing zero failures in tests of n components,
it might be expected that a future component has a
small probability of failure, but assigning the value 0
to this probability might not be considered to be
appropriate for any finite value of n. However,
observing zero failures in n components does not
exclude the possibility that failures could never
happen. An attractive, albeit informal, manner in
which to interpret lower and upper probabilities is to
regard the lower probability P(A) as quantifying the
evidence in favour of event A, and the upper prob-
ability P(A) as quantifying the evidence against
event A (hence, in favour of A, in agreement with
the conjugacy property). From this perspective,
when considering a system consisting of only a
single component, the NPI lower and upper prob-
abilities for successful functioning of this one
future component, given zero failures in n compo-
nents tested (so s=n), which are equal to (P,P)
(1:1n,n) = (n/(n+1),1), are attractive, as the
upper probability reflects that there is no evidence
from the test data against successful functioning of
the future component, whereas the lower probability
provides a natural cautious inference that can be
used in quantitative risk assessment. As such, the
results in this paper can be used in zero-failure
reliability demonstrations from NPI perspective,
generalizing the results presented by Coolen and
Coolen-Schrijner [9]. For example, it is possible to
consider decisions on levels of redundancy to build
into the system (e.g. the value of m if k is determined
by the system requirements), if possible, in order to
reduce the number of zero-failure component tests
required to demonstrate reliability at a chosen level.
This is briefly illustrated in Example 3 in section 4,
and discussed in more detail in section 6 for more
complex systems. The results in this paper can also
be used in a straightforward manner to take into
account the costs of components and of testing,
together with practical constraints on test budget and
time, in line with the Bayesian approach to such
problems [29, 30]. This is also briefly discussed in
section 6, but it is mostly left as an interesting and
important topic for future research.

For the special cases with m=1, k=1, or k=m, for
which the NPI lower and upper probabilities for
successful system functioning given s successes in n
component tests are given above, it is easily seen that
the following result holds, for 0 < s < n

P(m: kln,s)=P(m: kjn,s + 1) (3)

The result of equation (3) actually holds generally for
the NPI lower and upper probabilities for all k-out-
of-m systems as considered in this paper. A direct
proof, using the expressions (1) and (2), is an exercise
in combinatorial analysis. However, this result fol-

lows immediately from detailed consideration of the
underlying representation assumed for Bernoulli
random quantities in the NPI method by Coolen [18]
that is used here. In this paper, this detailed justifi-
cation for the equality (3) is not provided, but the
examples in section 4 will, of course, illustrate this
interesting property of these inferences. A second
way to quickly justify the equality (3) is based on the
fact that all NPI results for k-out-of-m systems pre-
sented in this section can also be derived within the
Bayesian framework, which will be briefly discussed
in section 7. The result (3) can obviously be used to
reduce computational effort, if upper and lower
probabilities are required for all possible values of s.
The elegance of this equality should be emphasized,
as it implies that the intervals created by corre-
sponding lower and upper probabilities of successful
system functioning, for s =0,1,...,n, form a parti-
tion of the interval [0,1].

4 EXAMPLES FOR k-OUT-OF-m SYSTEMS

In this section, numerical examples are presented to
illustrate the results from section 3, and some related
issues are discussed.

Example 1

Consider a series system with ten exchangeable com-
ponents (so, k=m=10), and the only information
available is the result of a test of two components, also
exchangeable with the ten to be used in the system. For
the three possible values of the number of successes
in the test, s = 0, 1, 2, the NPI lower and upper prob-
abilities for successful functioning of the system are

(P, P)(10 : 10[2,0) = (0,6_16>
(P,P)(10:10[2,1) = (%%)
(P,P)(10:10[2,2) = (é 1)

These values illustrate some of the general properties
presented in section 3; namely, that the NPI upper
probability for successful system functioning given s
successes in n tests is equal to the NPI lower prob-
ability for successful system functioning given s+ 1
successes in n tests. The value 0 (1) of the NPI lower
(upper) probability for the case s=0 (s=2) reflects
that in this case there is no strong evidence that the
components can actually function (fail). These values
emphasize the serious error that can be made if,
instead of a careful analysis that combines the
uncertainty modelling and available information, one
would plug a ‘reasonable’ estimate of a parameter
representing the functioning of a component into a
formula for a probability for system functioning
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depending on this parameter. For example, if it was
assumed that a parameter 6 represents an unknown
probability for such a component to function, then,
conditional on this parameter, the probability for
successful functioning of this series system would be
6'% for s=1, so one failure and one success in two
tested components, a ‘reasonable’ estimate would be
6=1/2 (e.g. this would be both the moment
estimate and maximum likelihood estimate), and it
could be tempting to use this value to predict suc-
cessful functioning of the series with probability
6'° = (1/2)'° = 1/1024, which is far lower than the
corresponding NPI lower probability 1/66 as pre-
sented in this paper; therefore, system reliability
would be substantially underestimated. Although it
is well known that to plug point estimates into such
formulae is wrong, text books in reliability rarely
address such issues carefully. In section 7, brief com-
ments are made on the Bayesian approach, where it
is easily seen that, for any reasonably non-informa-
tive prior distribution, the corresponding predictive
probability of system functioning is within the inter-
val created by the NPI-based lower and upper prob-
abilities. The following is an informal argument that
leads to a better alternative than the plug-in
approach, and that is in line with the NPI approach.
On the basis of one success in two tests, a predictive
probability for the next component to be successful
might logically be set at (about) 1/2. For the series
system to function successfully, all ten components
must function. Consider the second component in
the series system, given that the first functions suc-
cessfully, and given the data from the test; hence, for
this component, the information available consists of
two successful components out of three, and there-
fore a predictive probability for this component to
function might be set at (about) 2/3. Continuing this
reasoning, which acknowledges the interdependence
of the ten components in the system, an intuitively
reasonable predictive probability for successful
functioning of the series system would be (about)

1 2 3 10 1

X=X X =

2 3 4 11 11
which is between the corresponding NPI-based lower
and upper probabilities. It should be emphasized that

this latter informal reasoning is only presented as a
possible explanation for why the use of a plug-in
estimate is wrong; it is not suggested that the value
1/11 is a ‘correct’ precise probability in this case, an
obvious reason being that this informal argument
would lead to precise probability 0 (1) for system
functioning in the case s=0 (s=2).

If, instead of a series system, a parallel system with
ten components (so k=1, m=10) is considered, also
with two components tested, then the NPI lower and
upper probabilities for successful functioning of the
system are

(P,P)(10: 1[2,0) = (0,2)

(P,P)(10:12,1) = (g,%)

(P,P)(10:1]2,2) = <%,1>

Note here that mistakenly using a plug-in estimate of
1/2 for the case s = 1, as discussed above, could lead to
a suggestion that the value 1 — (1/2)'° = 1023/1024
would be a reasonable probability for the event that
the system will function. This value is substantially
higher than the corresponding NPI upper probability
65/66, and far greater than the corresponding NPI
lower probability 5/6, which might be attractive to use
for risk assessment from a cautious perspective, and,
hence, there could be a danger of overconfidence in
the system’s reliability if the uncertainty and infor-
mation are not properly analysed.

Example 2
To illustrate further the NPI results for system relia-
bility, presented in section 3, Table 1 provides the
NPI lower and upper probabilities for all possible
cases with n=4 components tested, of which s
functioned successfully, and the system consisting of
m =5 components, of which at least k must function.
The values in Table 1 show that, in order to obtain
a reasonably large NPI lower probability for success-
ful system functioning, it is not necessarily required
that most tested components function well if k is
small, which means that the system has much built-
in redundancy, but for large values of k (nearly)

Table1 NPI lower and upper probabilities for all cases with m =5 and n=4
k=1 k=2 k=3 k=4 =

P P P P P P P P p p
s=0 0 0.556 0 0.278 0 0.119 0 0.040 0 0.008
s=1 0.556 0.833 0.278 0.595 0.119 0.357 0.040 0.167 0.008 0.048
§s=2 0.833 0.952 0.595 0.833 0.357 0.643 0.167 0.405 0.048 0.167
§s=3 0.952 0.992 0.833 0.960 0.643 0.881 0.405 0.722 0.167 0.444
s=4 0.992 1 0.960 1 0.881 1 0.722 1 0.444 1
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Table2 NPI lower probabilities for zero-failure testing Table3 Required number n of zero-failure tests for
with k=8 P(m:8n,n)=p
m=28 m=9 m=10 m=11 m=12 m=28 m=9 m=10 m=11 m=12
s=n=5 0.385 0.604 0.736 0.819 0.872 p=0.75 24 9 6 4 4
10 0.556 0.789 0.895 0.945 0.970 0.80 32 11 7 5 4
15 0.652 0.870 0.948 0.978 0.990 0.85 46 14 8 6 5
0.90 72 19 11 8 6
0.95 153 30 16 11 9
0.99 792 77 33 21 15

all tested components must have been successful.
Table 1 shows that the lower and upper probabilities
are (a) decreasing in k, keeping m, n, and s constant;
(b) increasing in s, keeping m, n, and k constant.

Example 3

As mentioned in section 3, the results in this paper
can also be used in zero-failure reliability demonstra-
tion from an NPI perspective, generalizing the results
presented by Coolen and Coolen-Schrijner [9]. Sup-
pose that for system functioning it is required that k
components function, but that redundancy can be
built into the system by increasing the total number
of components m in the system. For example, com-
ponents considered could be batteries required to
provide back-up in case of problems with electricity
supply for a safety critical system, where system
functioning requires a minimum of three batteries
to function when demanded, but where installing
more batteries might provide important redundancy.
Rahrouh et al. [29] presented a Bayesian approach for
optimal decisions for reliability demonstration (see
also reference [30]), assuming that only component
tests with zero failures would lead to release of the
system for practical use, as is often the case if high
reliability is required. They considered both the costs
of testing and the costs of extra system redundancy,
and also took into account practical constraints
with regard to test time and budget. Apart from cost
and time figures, and related constraints, the key
input for such decisions consists of the lower prob-
abilities P(m : k|n,n), as functions of m and n for
fixed k. To illustrate the approach presented in this
paper, some such NPI lower probabilities are pre-
sented in Table 2, for k=8 and the cases n=>5, 10,
15, and m varying from 8 to 12. Clearly, the corre-
sponding NPI upper probabilities are all equal to
one under the zero-failure testing assumption. Table
2 shows that the lower probability, under the
assumption of zero-failure testing is (a) increasing
in m, keeping n and k constant; (b) increasing in n,
keeping m and k constant.

The NPI lower probabilities presented in Table 2
can be used in several ways. For example, consider
the case m =28 with five zero-failure tests, leading
to NPI lower probability 0.385 for successful
system functioning. The table shows that increasing
the redundancy to m=9, keeping k=8, would

increase the NPI lower probability to 0.604, while to
increase the number of zero-failure tests to ten would
increase the NPI lower probability to 0.556; so if these
two actions were available at similar costs, increase
of redundancy might be preferred to more tests.
However, if 15 tests were possible at a cost similar to
the added redundancy, then this might be preferred,
as the corresponding NPI lower probability would
increase to 0.652, if all 15 tests would be successes.
Clearly, extra testing has the added advantage of
possibly finding more failures, in which case the
analysis would be repeated after further inspection
or development of the components. In the NPI
approach, the absence of prior information makes it
impossible to infer how likely failures in the tests
would be, but in high reliability demonstration it
would normally be considered to be quite surprising
to encounter failures in tests.

Table 3 extends this example by presenting the
minimum number of zero-failure tests required to
achieve a chosen value for the NPI lower probability
for successful system functioning, again for k=8 and
m varying from 8 to 12. The requirement considered
is P(m : 8|n, n) > p for different values of p.

The main conclusion from Table 3 is that, in order
to demonstrate high reliability via zero-failure test-
ing, many successful tests are required, yet the
number can be reduced substantially by building in
redundancy.

5 SERIES OF INDEPENDENT k;-OUT-OF-m;
SUBSYSTEMS

The results of section 3 can be straightforwardly used
to consider the reliability of systems that consist of a
series configuration of N>2 independent subsys-
tems, with subsystem i (i=1,...,N) a k;-out-of-m;
system consisting of exchangeable components.
Clearly, other system configurations could also be
considered; these are left as an interesting topic for
future research. As before, it is assumed that, in
relation to subsystem i, n; components that are
exchangeable with those to be used in the subsystem
have been tested, of which s; functioned successfully.
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For the series system to function, all of its subsystems
must function, and due to the assumed indepen-
dence of the subsystems (which implies indepen-
dence of components in different subsystems), the
NPI lower and upper probabilities for such a series
system to function are

N
P(m:kin,s) = | | P(m; : ki|n;, s;) (4)
i=1
and
— N —
P(m: k|n,s) = HP(mi s kilng, ;) (5)

Il
_

respectively, where notation with N-vectors m, k, n, s
has been introduced to generalize notation in an
obvious manner from that used in section 3. Results
for several special cases are easily derived from cor-
responding results in section 3; for example, the NPI
lower probability for system functioning is equal to
zero if s;=0 for at least one subsystem, and the NPI
upper probability for system functioning is equal to
one only if all components tested, for all subsystems,
were successful, sos;=n;foralli=1, ..., N. In section
6, redundancy allocation for such series systems will
be considered, under the assumption of zero-failure
testing (s;=n; for all i=1,...,N), in which case the
NPI upper probability for the whole system to func-
tion is equal to one, and the corresponding NPI lower
probability is equal to

P(m: kln,n) = | | P(m; : ki|n;, n;)

1-— (”i +}i€ii - 1) (”i -}:imi) 1]
(6)

Redundancy allocation is also of interest if some
components failed the tests; this is left as an impor-
tant and interesting topic for future research. The
property (3) still holds per subsystem so that for the
whole system

—

Il
—

L

1

P(m:kin,s) =P(m:kjn,s+1) (7)
where 1 is an N-vector with all components equal to
1. Using this property leads to a reduction in overall
computational effort if it is wished to derive NPI
lower and upper probabilities for system functioning
for many or all possible test outcomes s.

This generalization of the NPI approach to relia-
bility assessment for a series of independent k;-out-
of-m; subsystems is illustrated in Example 4.

Example 4
Consider a system that consists of two independent
subsystems (so N=2) in a series configuration,

where, for each subsystem, three exchangeable
components must function to ensure the subsystem
to function, hence k; = k» = 3, and where five com-
ponents exchangeable with those in subsystem 1
have been tested, and also five components
exchangeable with those in subsystem 2 have been
tested, so n; = n, = 5. Tables 4 and 5 present the NPI
lower and upper probabilities, respectively, for func-
tioning of this system, for varying numbers of test
successes (s; and s,) and different numbers of com-
ponents (m; and m,) in these k;-out-of-m; sub-
systems. Test results for which the NPI lower
probability for system functioning is zero (s; =0 or
s, =0) are deleted from Table 4; the case s; = s, = 51is
deleted from Table 5 as the corresponding NPI upper
probability is one for all m; and m,.

These tables illustrate the manner in which system
reliability, measured by these NPI lower and upper
probabilities, increases with increasing numbers of
test successes, and with increasing system redun-
dancy. They also illustrate property (7); for example,
the reported NPI upper probabilities for (s}, s,) =
(3, 4) are equal to the corresponding NPI lower prob-
abilities for (s;, s2) =(4, 5). Note that in situations

Table4 NPI lower probability for system functioning

(my,mp) = (34) (4,4) (3,5) 3,6) (4,5) (5,5)

(s1,82) = (1,1) 0.0009 0.0023 0.0015 0.0022 0.0040 0.0069
(1,2) 0.0030 0.0079 0.0047 0.0062 0.0125 0.0218
(2,1) 0.0034 0.0079 0.0060 0.0087 0.0139 0.0218

(2,2) 0.0119 0.0278 0.0187 0.0249 0.0437 0.0686
(3,3) 0.0638 0.1276 0.0893 0.1086 0.1786 0.2500
(4,3) 0.1276 0.2126 0.1786 0.2172 0.2976 0.3690
(5,3) 0.2232 0.2976 0.3125 0.3801 0.4167 0.4583
(3,4) 0.1063 0.2126 0.1318 0.1473 0.2636 0.3690
(3,5) 0.1488 0.2976 0.1637 0.1705 0.3274 0.4583
(4,4) 0.2126 0.3543 0.2636 0.2945 0.4393 0.5448
(5,4) 0.3720 0.4960 0.4613 0.5154 0.6151 0.6766
(4,5) 0.2976 0.4960 0.3274 0.3409 0.5456 0.6766
(5,50 0.5208 0.6944 0.5729 0.5966 0.7639 0.8403

Table5 NPI upper probability for system functioning

(my,myp) = (34 (44 (3,5) 3,6) (4,5) (5,5)

0.0023
0.0079
0.0170
0.0079
0.0170
0.0278
0.3543
0.4960
0.5952
0.4960
0.5952
0.6944
0.8333
0.8333

0.0015
0.0060
0.0149
0.0047
0.0089
0.0187
0.2636
0.4613
0.7381
0.3274
0.3571
0.5729
0.9167
0.6250

0.0022
0.0087
0.0216
0.0062
0.0109
0.0249
0.2945
0.5154
0.8247
0.3409
0.3571
0.5966
0.9545
0.6250

0.0040
0.0139
0.0298
0.0125
0.0238
0.0437
0.4393
0.6151
0.7381
0.5456
0.5952
0.7639
0.9167
0.8333

0.0069
0.0218
0.0417
0.0218
0.0417
0.0686
0.5448
0.6766
0.7381
0.6766
0.7381
0.8403
0.9167
0.9167

(s1,52)= (0,0) 0.0009
(1,0) 0.0034
(2,0) 0.0085
(0,1) 0.0030
(0,2) 0.0064
(1,1) 0.0119
3,3) 0.2126
(4,3) 0.3720
(5,3) 0.5952
3,4) 0.2976
(3,5) 0.3571
(4,4) 0.5208
(5,4) 0.8333
(4,5) 0.6250
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Table6 NPI lower probability for system functioning
after zero-failure testing

(my,my)= B4 (“G4H  B5 B6 45 (59

(n,ny) = (2,2) 0.2400 0.3600 0.2857 0.3143 0.4286 0.5102
(2,3) 0.2857 0.4286 0.3286 0.3524 0.4929 0.5867
(2,5 0.3333 0.5000 0.3667 0.3818 0.5500 0.6548

(2,10) 03736 0.5604 0.3912 0.3967 0.5868 0.6986
(3,2) 0.3000 0.4286 0.3571 0.3929 0.5102 0.5867
(5,2) 0.3750 0.5000 0.4464 0.4911 0.5952 0.6548

(10,2) 0.4615 0.5604 0.5495 0.6044 0.6672 0.6986
(5,5) 0.5208 0.6944 0.5729 0.5966 0.7639 0.8403

(10,5) 0.6410 0.7784 0.7051 0.7343 0.8562 0.8965

(5,10) 0.5838 0.7784 0.6113 0.6198 0.8150 0.8965

(10,10) 0.7185 0.8725 0.7523 0.7629 0.9135 0.9565
(50,50) 0.9394 0.9916 0.9430 0.9434 0.9954 0.9992
(50,51) 0.9396 0.9918 0.9431 0.9434 0.9954 0.9993
(50,55) 0.9401 0.9923 0.9431 0.9434 0.9955 0.9993

where for a particular subsystem all performed tests
are successes, the NPI upper probability for system
functioning is in fact the NPI upper probability that
the other subsystem functions. For example, in Table
5, for (s, s2) = (5, 4), the NPI upper probabilities for
system functioning when (m;, m,) = (3, 5), (4, 5), and
(5, 5) are identical and equal to the NPI upper prob-
ability that subsystem 2, a 3-out-of-5 subsystem,
functions.

For the same system [k; = k, =3, with varying (m;,
moy)], Table 6 presents the NPI lower probabilities for
system functioning after zero-failure testing, so with
(81, $2) = (14, ny), for different numbers of tests per-
formed. Comparing, for example, the lower prob-
abilities for (n;, n,) = (10, 5) with those for (n;, n,) =
(5, 10), illustrates the intuitively logical property that it
is better to have more zero-failure tests for sub-
systems with less redundancy than for subsystems
with more redundancy, if both subsystems have equal
k;. Also, the increase in reliability due to extra zero-
failure tests clearly decreases as a function of the
number of such tests already performed.

6 REDUNDANCY ALLOCATION AFTER
ZERO-FAILURE TESTING

In this section, the systems considered are again
systems consisting of a series configuration of inde-
pendent k;-out-of-m; subsystems, with the restriction
to zero-failure testing for all components, so n;
components that are exchangeable to those in sub-
system i have been tested, and none failed, hence s;
=n;forall i=1,..., N. For this situation, the problem
considered here is how to assign extra components to
subsystems, in order to increase the redundancy, and
hence the overall system reliability, which is assumed
to be quantified by the NPI lower probability for
system functioning (the corresponding NPI upper
probability is one). It is particularly logical to focus

attention on the NPI lower probability in situations
where a specific reliability requirement must be met,
as the lower probability can be considered to be a
conservative inference. It should be remarked that
such redundancy allocation is, of course, also inter-
esting to study, related to general test results; this is
left as an important topic for future research.

In traditional reliability theory, redundancy allo-
cation for systems tends to involve complex compu-
tations in order to achieve optimality [31]. In the NPI
setting for the systems considered here with zero-
failure testing, however, optimal redundancy alloca-
tion is achieved in a straightforward manner if only
overall system reliability is considered (so, for exam-
ple, no costs of components are taken into account).
It is proven here that sequential one-step optimal
allocation of extra components always leads to opti-
mal allocation of any number of extra components.
The algorithm is described next, and extensively
illustrated and discussed in Example 5. The claim of
optimality of this algorithm is justified in Appendix B.

The NPI lower probability for successful function-
ing of the whole system, following n; zero-failure tests
for components exchangeable with those in sub-
system i, was given as equation (6), which was

P(m:kin,n) = || P(m; : ki|n;, n;)

1 ni+ki— 1\ (ni+m;\ "
n; n;

Suppose now that j; additional components are
added to subsystem i, for i=1,..., N, with no further
tests performed, then the NPI lower probability for
successful functioning of the system becomes (as
before with obvious vector notation)

=T

Il
—

L

=

Pm+j:kln,n)=||P(m;+j;: kiln;, n;)

()
n;

y (ni + :Zi +jl-) 1] o

Two situations of most practical interest are the
optimal allocation of components to subsystems
when the opportunity arises to add a given number of
further components, and the requirement to add the
minimum number of components needed to satisfy a
reliability criterion that the NPI lower probability of
system functioning has to exceed a set value. Both of
these problems, and all other related problems where
it may be wished to add extra components in an
optimal sequence, are solved by the following

Il
_

L

Il
_

4
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algorithm (given below in pseudo-code), in which,
fori=1,...,Nandj; >0,

.. B(m,‘JrjiJrl :ki|n,-,nl~)

i,ji) = :

pli.Ji) P(m; + ji : kilni, n;)

Hence, p(i,j;) is the factor with which the NPI lower
probability of successful functioning of subsystem i
increases when j;+ 1 instead of j; extra components
are added to subsystem i. Clearly, p(i, j;) > 1 for all i, j;.

Optimal allocation algorithm

1. Set j;=0 and calculate p(i,j;) = p(i,0) for all
i=1,...,N

2. Determine i,, such that

plim:Ji,,) = max p(i, ji)
If this i,,, is not a unique value, then pick any one
of these values;

3. Add an extra component to subsystem i,,: set
Ji,, :=Ji,, + 1 and calculate p(ip, ji, );

4. Return to step 2, using the same values p(i, j;)
as in the previous step for i # i, together with
the new value p(iy,j;,) for subsystem i, as just
calculated in steps 2 and 3.

This algorithm can be stopped at any time, nor-
mally if a stop-criterion is achieved, e.g. if the total
number of possible extra components has been
assigned, or if a predetermined value for the NPI
lower probability for system functioning has been
achieved. After stopping the algorithm, the vector
Jj=(1,-..,jn) gives the number of extra components
that is added to each subsystem and the NPI lower
probability for successful functioning of the system
after adding these extra components is equal to

N ji—1
P(m+j:kin,n)=P(m:kinn)x[] [[eGi.l) (9)
i=1 =0

This enables easy calculation of the NPI lower prob-
ability at step 3 in the above algorithm, as it just requi-
res the previous value of this NPI lower probability to
be multiplied by the p(i,, j;, ) calculated at that step.

The claim that this allocation algorithm is optimal
is justified in Appendix B, the key to the proof being
the fact that p(i, j;) is strictly decreasing in j; for all
i=1,...,N. Variations to this algorithm are obvious
for situations with some restrictions on the allocation
opportunities. The situation becomes more compli-
cated if costs of additional components, and possibly
overall budgets, must be taken into account; some
brief comments are included in section 7, but general
NPI theory for optimal redundancy allocation under
cost considerations, and possibly also taking costs of
testing into account, is left as an interesting and
important topic for future research. Example 5 illus-
trates the optimal allocation algorithm, and discusses
many relevant aspects of this approach.

Example 5

Throughout this example, the starting point is a sys-
tem consisting of four independent k;-out-of-m;
subsystems in series configuration, with the values k;
and m; as given in Table 7. Several scenarios of allo-
cation of additional components, to increase redun-
dancy optimally, will be illustrated for this system, all
assuming n; zero-failure tests for subsystem i.

In the following tables, optimal allocation sequen-
ces are presented using notation i, and w;, which is
such that the #-th additional component is added to
subsystem i, and it is the w;th extra component
allocated to that subsystem. The NPI lower prob-
ability for successful functioning of subsystem i,
which is here considered to represent the reliability
of this subsystem, after the ¢-th extra component has
been added to this subsystem, is denoted by R(i,),
and RS(#) denotes the NPI lower probability for suc-
cessful functioning of the whole system at that stage.
Three cases are considered, in each of which five
extra components are optimally allocated, namely
with n;=5, 10, 50 zero-failure tests for each subsys-
tem. The optimal allocation sequences are presented
in Tables 8, 10, and 12, and the corresponding initial
and final system reliability (NPI lower probabilities),

Table7 Subsystem i: k;-out-of-m;

i ki m;
1 1 2
2 2 3
3 3 5
4 1 4

Table8 Optimal allocation sequence of five components

— Nn;= 5
t i w; R(y) RS(1)
1 2 1 0.9524 0.8248
2 3 1 0.9545 0.8589
3 1 1 0.9821 0.8858
4 2 2 0.9762 0.9079
5 3 2 0.9735 0.9259

Table9 Reliability before and after optimal redundancy
allocation of five components — n;=5

(Sub)system Initial reliability Final reliability
1 0.9524 0.9821
2 0.8929 0.9762
3 0.9167 0.9735
4 0.9921 0.9921
RS 0.7733 0.9259
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for each subsystem and for the whole system (RS), are
presented in Tables 9, 11, and 13.

Note that, for n;= 10, the five extra components are
added to subsystems in the same sequence as in the
case with n;=5, but the order of components added
is different for n;=50. With two components added
to subsystem 1, it has become a 1-out-of-4 system,
just like subsystem 4 (with no components added),
leading to the same final reliability values for these
two subsystems in Table 13.

With the help of the system considered in this
example (Table 7) it is illustrated, in more detail, how
the optimal allocation sequence of additional compo-

Table 10 Optimal allocation sequence of five
components — n;=10

t i w; R(i) RS(1)

1 2 1 0.9890 0.9517
2 3 1 0.9918 0.9650
3 1 1 0.9965 0.9765
4 2 2 0.9963 0.9837
5 3 2 0.9966 0.9885

Table11 Reliability before and after optimal redundancy
allocation of five components — 1n;=10

(Sub)system Initial reliability Final reliability

1 0.9848 0.9965

2 0.9615 0.9963

3 0.9780 0.9966

4 0.9990 0.9990

RS 0.9252 0.9885

Table12 Optimal allocation sequence of five
components — n;= 50

t i w; R(iy) RS(1)

1 2 1 0.9998387 0.9987007
2 1 1 0.9999573 0.9994118
3 3 1 0.9999592 0.9997521
4 2 2 0.9999853 0.9998987
5 1 2 0.9999968 0.9999382

Table 13 Reliability before and after optimal redundancy
allocation of five components — n; =50

nents to subsystems can change with the number of
zero-failure tests performed per subsystem. The num-
ber of zero-failure tests for subsystems 1, 3, and 4 are
kept at 5 (so n;=5 for i=1, 3, 4), but for subsystem 2
the number of zero-failure tests, n,, is varied from 5 to
10. The optimal sequences in which five further com-
ponents are allocated to the subsystems are presented
in Table 14, together with the final reliability for the
whole system. This clearly illustrates the intuitively
logical effect that, with an increasing number of
zero-failure tests for components exchangeable with
those in subsystem 2, the benefit of additional redun-
dancy added to subsystem 2 decreases, and, hence, the
optimal redundancy allocation order changes with
subsystem 2 moving back in the order.

To finish this example, the optimal allocation
sequence of 12 further components to subsystems is
presented in Table 15, for the same system as con-
sidered throughout this example (Table 7) and with
n;=5foralli=1,...,4 (so the first five allocations are
identical to those presented in Table 8). Table 16

Table14 Allocation of extra components, with n, varying
—n;=5fori=1,3,4

ny allocation order final reliability

0.9259
0.9341
0.9389
0.9419
0.9450
0.9479

N W W W

WwwwwN

wWwhNdND W

= O 0o~
Ww W NN
DN = =

Table15 Optimal allocation sequence of 12 components

—n;= 5

t i, w;, R RS(1) t i, w;, R RS(1)

1 2 1 0.9524  0.8248 7 3 3 0.9837  0.9460
2 3 1 0.9545  0.8589 8 1 2 0.9921 0.9556
3 1 1 0.9821 0.8858 9 3 4 0.9895 0.9612
4 2 2 0.9762  0.9079 10 2 4 0.9924  0.9665
5 3 2 0.9735 0.9259 11 1 3 0.9960 0.9704
6 2 3 0.9870 0.9362 12 4 1 0.9960 0.9742

Table16 Reliability before and after optimal redundancy
allocation of 12 components — n;=5

(Sub)system Initial reliability Final reliability (Sub)system Initial reliability Final reliability
1 0.9992459 0.9999968 1 0.9524 0.9960
2 0.9978229 0.9999853 2 0.8929 0.9924
3 0.9996188 0.9999592 3 0.9167 0.9895
4 0.9999968 0.9999968 4 0.9921 0.9960
RS 0.9966872 0.9999382 RS 0.7733 0.9742
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presents the corresponding initial and final relia-
bility values per subsystem and for the whole
system (RS).

The optimal allocation sequence in Table 15 is not
unique, as the allocations at steps 11 and 12 could
have been performed in a different order, leading to
the same result, as these two allocations have iden-
tical effects on the NPI lower probability for the
functioning of the whole system. This follows
immediately from the fact that, after step 8, sub-
system 1 has become a 1-out-of-4 system, just like
subsystem 4. If such redundancy allocation had been
performed in order to achieve a system reliability,
expressed through the NPI lower probability of suc-
cessful system functioning, of at least 0.95, then
Table 15 shows that a total of eight extra components
would be sufficient, with two extra components
allocated to subsystem 1, and three each to sub-
systems 2 and 3. It is also clearly illustrated that the
effect of such extra components on the overal system
reliability decreases as a function of the total number
of already added components.

7 CONCLUDING REMARKS

The Bayesian approach to statistics also provides a
natural framework for inferences of the kind con-
sidered in this paper. If a parameter 6 is assumed to
represent the probability of successful functioning of
a single component, then the probability of success-
ful functioning of a k-out-of-m system, as a function
of 0, is simply represented by

Pom - ki) =S (Moo

=k

For any assumed prior probability distribution for 6
and test data, the Bayesian approach leads to a pre-
cise posterior probability for successful functioning
of the system. Beta distributions are particularly
attractive prior distributions for 6 in this case, as they
are conjugate, which means that the corresponding
posterior distributions for 6 are also beta distribu-
tions. The results presented in this paper actually
coincide with the corresponding Bayesian results
based on two particular beta prior distributions,
namely the NPI lower probabilities for successful
system functioning correspond to Bayesian prob-
abilities based on the beta(0,1) prior, and the NPI
upper probabilities correspond similarly to the beta
(1,0) prior (note that these priors are improper, but
the corresponding posterior predictive probabilities
of interest here do exist). This is due to the fact that,
generally, for events of the form ‘k or more successes
out of m trials’, the inferences of Coolen [18] coincide

with these Bayesian inferences. It should, however,
be emphasized that this is not the case for all events
considered in the NPI approach by Coolen [18]. The
fact that these inferences provide the same values for
the (lower and upper) probabilities considered can be
understood from the representation of successes and
failures that underlies NPI [18], and which is closely
related to the approach by Bayes [19]. This under-
lying representation, which is not discussed further
here, also provides a simple justification for the
equality (3) presented in section 3. In relation to
Example 1, it is useful to remark that, when using a
Bayesian approach with improper prior beta(0,0),
and adding test data consisting of one success and
one failure (leading to a uniform posterior distribu-
tion for 6), the posterior probability for successful
functioning of a ten-out-of-ten system would be
equal to 1/11, the value also derived via an informal
argument in Example 1.

Hartigan [32] proposed the use of either the beta
(0,1) or the beta (1,0) prior for ‘cautious’ inference,
and Coolen and Coolen-Schrijner [33] also proposed
the beta(0,1) prior for Bayesian high-reliability
demonstration, mainly due to its relation to NPI.
However, from Bayesian perspective, there is no
strongly convincing argument for such a particular
choice of prior distribution, yet the precise choice of
prior distribution always influences the inferences to
some extent. Even more, the NPI approach is based
on fewer assumptions than the Bayesian approach,
as only A,,), which is related to finite exchangeability,
is assumed, whereas the assumption of an unknown
parameter 6 to represent the probability of success-
ful functioning for each component requires an
underlying assumption of an infinite population of
such components, all of which are assumed to be
exchangeable [34]. The impact of this latter assump-
tion is often not clear, and might appear to be of little
relevance as the NPI results in this paper agree with
some Bayesian results, as just mentioned. However, it
should be emphasized that the finite exchangeability
assumption that underlies the NPI approach does not
lead to the assumed existence of a single parameter 6
representing the probability of successful functioning
of each component considered. It could be argued,
therefore, that the Bayesian approach uses a detour,
via a stronger exchangeability assumption on an
infinite population of components, to, in this case,
obtain to a similar answer as provided by the more
direct NPI approach, with different Bayesian prior
distributions corresponding to the NPI lower and
upper probabilities.

It is an advantage of NPI that the inferences are in
terms of lower and upper probabilities, as these
naturally reflect the amount of information available,
and deal in an attractive manner with situations
where all test results are failures or all are successes.
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In practical risk assessment, it is often clear which of
the lower and upper probabilities should be used to
support decisions, with lower probability for system
functioning often the more natural in reliability
applications, in particular if the aim is to demon-
strate reliability [30], while the difference between
corresponding upper and lower probabilities can
provide further useful information.

In sections 5 and 6, more complex systems were
considered than in section 3 of this paper, but still
with an assumption of independence between dif-
ferent subsystems that enabled quite straightforward
application of the NPI approach. More challenging is
the development of the NPI approach for systems
consisting of parallel and series subsystems, and
beyond that for more general system structures; in
particular, if exchangeable components are used in
different subsystems, as, for such systems, the basic
NPI results by Coolen [18] must be extended to take
the particular groupings of future components in the
system into account. The basic idea of the NPI
approach [18] will remain the same, but the combi-
natorics involved in deriving the lower and upper
probabilities will be challenging for larger systems,
which raises interesting problems for future research.

The results in section 6 determine how to allocate
additional components optimally for redundancy for
any criterion in the case where the cost of compo-
nents is irrelevant, or where these are the same for all
components. If the costs of additional components
differ per subsystem, say c; for each additional com-
ponent for subsystem i, and the aim is to maximize
system reliability under budget constraints, then
the redundancy allocation problem becomes more

complex. As the maximization of Hﬁ-\i 1 H’Z;é p(i, ;)

can be replaced by maximization of SV, ’l;(l)
In[p(i, [;)], this problem is close in nature to the well-
known knapsack problems in discrete optimization
[32, 36]. If the p(i,j;) were constant, then indeed the
redundancy allocation problem with different costs
for components and with a budget constraint would
be a knapsack problem, and could therefore be
solved by available algorithms. However, the fact
that, for each i, p(i, j;) is decreasing in j;, complicates
matters, and leaves an interesting topic for future
research. It is expected that knapsack solution
methods [35, 36] can be modified in order to solve
this problem, and they might also provide suitable
approximate solutions if large systems with many
additional components are considered.

Throughout this paper, several research challenges
related to this NPI approach to system reliability and
redundancy allocation have been mentioned. Several
of these require some further development of NPI
theory and methods, whereas others provide further

analytical challenges or require development of
suitable computational algorithms. It will also be
interesting to compare the NPI approach for
system reliability, presented in this paper, in detail
with alternative approaches, if possible in actual
applications.
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APPENDIX A

Notation

A Hill’s inferential assumption

C; costs to add one extra component to sub-
system i

i the subsystem to which the #-th extra com-
ponent is added

j vector (i, ..., Jjn)

J total number of additional components
added to the whole system (J = Zfi 1Ji)

Ji number of additional components added to
subsystem i

k minimum number of functioning compo-
nents for a k-out-of-m system to function

k vector (ky, ..., ky)

k; minimum number of functioning com-
ponents for a k;-out-of-m; subsystem to
function

m total number of components in a k-out-of-
m system

m vector (my, ..., my)

m; total number of components in a k;-out-of-
m; subsystem

n number of components that have been
tested in a k-out-of-m system

n vector (ny,...,ny)

N number of independent subsystems in the
system

n; number of components that have been
tested in a k;-out-of-m; subsystem

p chosen value of the NPI lower probability
for successful system functioning

P(A) NPI lower probability for event A

P(A) NPI upper probability for event A

R, NPI lower probability for successful func-
tioning of subsystem i, after the rth extra
component has been added to this sub-
system

R; set {ry,...,r;} containing the numbers of
successes out of m future trials in the event
of interest, with 0<r < ... <r,<m and
1<t<m+1

RS(?) NPI lower probability for successful func-
tioning of the whole system after ¢ extra
components are added to the system

s number of successfully tested components
(out of n) for a k-out-of-m system

s vector (si,...,Sn)

Si number of successfully tested components
(out of n;) for a k;-out-of-m; subsystem

w; number of extra components (out of ) that
have been added to subsystem i,

Yb random number of successes in trials a

to b
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0 unknown parameter

p(i,j;)  factor with which the NPI lower probability
of successful functioning of subsystem i
increases when j; + 1 instead of j; additional
components are added

APPENDIX B

Optimality of redundancy allocation algorithm

In section 6, it was claimed that the presented
redundancy allocation algorithm, in which sequen-
tially each additional component is allocated
according to one-step optimality, provides overall
optimality in the sense of maximum NPI lower
probability for successful functioning of the system,
no matter how many components can be added in
total, or indeed how the number of extra components
is determined. Equation (9) implies that, for any total
number /> 1 of components that can be added to the
subsystems, optimality is achieved by maximization
of [T, Jli;(l) p(i, ;) under the constraint Y j; </J.
As p(i,j;)>1 for all i,j; this maximum will be

attained with the active constraint >V, j; = J, so all
additional components available or allowed are used.
The proof that this product Hé\i 1 Jl;é p(i,l;) is max-
imized, under the active constraint, by the sequence
of one-step optimal allocations, follows from the fact
that, foreachi=1,...,N, p(i, j;) is strictly decreasing
in j;. The proof of this property is given below.

Consider a specific subsystem i, and for simplicity
denote the j; by j, and let

0 (ni"rki—l), A= (ni+mi+j>
n; n;

Observe that Aj., = [1+ n;/(m; +j+ 1)]A;, for j>0,
and write
1 . 1- a/Aj .
p(l7]) 1- a/Aj+1
an;

(mi +j+1)(Aj1 — a)

A1 —a—an;/(mi+j+1)
Aj+1 —da

As Ap>a, and the sequences {Aj; — a}j and
{mi + j+1}; are strictly increasing in j, also 1/p(i, j)
is strictly increasing in j. Hence, the sequence
{p(i.j)}j=1 is strictly decreasing.
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