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Credal Networks

Extend Bayesian nets to the imprecise
setting.

Knowledge is represented qualitatively by
an interaction graph, and quantitatively by a
collection of credal sets.

Applications: e.g. expert systems, classifiers.



Credal Networks

® Use of imprecise probabilities leads to
computational difficulties.

® |nferences in CNs are NP-hard even in
cases where their Bayesian counterpart is
polynomial.

® Current approximate algorithms for
computing with CNs do not provide any
bounds on the error.



Extensive Specification

® We focus on extensively specified credal
sets/networks.

® Credal sets are specified as sets of
conditional probability tables.

® Results can be generalized to locally
specified nets.
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Potentials

® A potential P(U|V) is mapping from the
possibility space of U andV to the set of
nonnegative rational numbers.

® |t“may’ represent (conditional) probability
functions p(U|v) for each v.

® They inherit algebraic properties from
probabilities (c.f. valuation algebras).
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Credal Sets

® We consider extensively specified credal
sets.

® By abuse of terminology, we define a credal
set K(U|V) as a finite set of potentials
P(U|V).

® Equivalent to the extreme mass functions
of a closed convex set of (precise)
probability functions, where the choice of a
cpf in a potential implies the choice of the
others cpfs.



Credal Sets

® | et u be an element of the sample space of

U, and v be an element of the sample space
of V.

® K(ulv) denotes a set of probabilities p(u|v).
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Credal Networks

Let X={Xl,...,Xn} be a set of categorical
random variables.

Let G=(V,E) be a DAG where there is a
node Vi for each Xi in X.

Let K be a collection of credal sets
K(Xi|pa(Xi)) for each Xi in X.

A credal network is a pair CN=(G,K).
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Algebra of Credal Sets

® Marginalization and multiplication
operations generalizes marginalization and
multiplication in probabilities.

® Operations in Credal sets are performed
element-wise.



Algebra of Credal Sets

e KI ={PI,P2},K2 = {P3,P4},
K3 = KI*K2 = {PIP3,P|P4,P2P3,P2P4)

* K(A) = 3 K(A,B)
= { SsP(A,B): P(A,B) in K(A,B) }

* 5o K(AIB)K(C|D) = K(C|D) S K(A[B)



Inference in CNs

® Given a CN=(G,K) the strict (strong)
extension is given by K(X) = [[K(Xi|pa(Xi))

® Belief updating consists in computing
marginals conditional on evidence

o K(QIE) = Sxae K(X) / Ixe K(X)



Inference in CNs

® |n particular, if E=@

o K(Q) = 2xae K(X)

® |t is possible to map a belief updating
problem with evidence into an equivalent
belief updating problem with no evidence.



Inference in CNs

® For a given ordering XlI,...,Xn
o K(Q) = 2xi,.xnq K(X)
o K(Q) = >xi.xna [ IK(Xi|pa(Xi))

® Chosen ordering matters (a lot).



Bucket Elimination

® Assume an ordering Xl,...,.Xn of the
variables in X.

® Start with an ordered partition
bucket I,...,bucket n of K.

® bucket i contains all credal sets whose
highest variable is Xi.

® Recursion:fori:=nto |, do:

® Compute K(U[V) = > xiQ [Ibucketi Kj and
add it to the largest-index variable bucket.



Example

8 G = ({A,B,C},{(A,C),(B,C)})
o K = {K(A)K(B).K(C|A,B)}

@ K(C) ?




Example

ordering: B, C, A

b initialization:

bucket B bucket C bucket A




Example

ordering: B, C, A

v recursion 1: K(CIB)=3A K(A)K(CIA,B)

bucket B bucket C bucket A



Example

ordering: A, B, C

recursion 2:
%

K(CIB) [ K(C|A,B)

bucket B bucket C bucket A



Example

ordering: A, B, C

recursion 3:

K(CIB) [ K(C|A,B)

bucket B bucket C bucket A

KEC)=ZB K(B)K(CIB)



Example

@ Final computation:

@ K(C)=28 K(B)=a K(A)K(C|A,B)

a |K(C) = IK(B)IxIK(A)IXIK(CIA,B)| !



Inference

® Computing the marginal credal set is

exponential in the number of potentials in
K.

® Usually we are interested only in the
extremes, not in the full credal set:

® min p(q) = min K(q)
® max p(q) = max K(q)



Pareto Dominance

® Ve say that a potential PI(X) Pareto
dominates a potential P2(X) iff

® Pl(x) = P2(x), for all x,and
® Pl(x) > P2(x), for some x.

® Notation: Pl (X) > P2(X).



Pareto Set

® Given a credal set K(X)

® The Pareto set PS(X) is the set of non-
dominated potentials in K(X)

® PS(X) :={ P(X) in K(X): there is no P’(X)
in K(X) such that P’(X) > P(X) }.

® [PS(X)| = [K(X)].



Upper Probability

® The maxima can only be obtained at non
dominated potentials:

® max p(q) = max K(q) = max PS(q)

® Equivalently for min p(q) with a small
modification in Pareto dominance.



Results

o et K(X) =2z K(XZ)K(YZ).
® Theorem. PS(X) = PS(2z PS(XZ)PS(YZ))
® The “Pareto operation” is distributive.

® Ve can use this to reduce the size of the
credal set propagated during bucket
elimination.



Bucket Elimination

® Assume an ordering Xl,...,Xn of the
variables in X.

® Start with an ordered partition
bucket I,...,bucket n of K.

® bucket i contains all credal sets whose
highest variable is Xi instantiated at q.

® Recursion:fori:=nto |, do:

® Compute PS(U|V) = PS(2xiq [bucketi Kj)
and add it to the largest-index variable
bucket.



Example

8 G = ({A,B,C},{(A,C),(B,C)})
o K = {K(A)K(B).K(C|A,B)}

@ max K(c) = max PS(c) ?




Example

ordering: B, C, A

b initialization:

bucket B bucket C bucket A




Example

ordering: B, C, A

v recursion L o cig)-ps(z.k(AIK(clAB)

bucket B bucket C bucket A



Example

ordering: A, B, C

recursion 2:
%

bucket B bucket C bucket A



Example

ordering: A, B, C

recursion 3:

PS(CIB) | K(C|A,B)

bucket B bucket C bucket A

pS(C;=pS(ZB K(B)PS(clB))



Example

@ Final computation:

@ PS(c) = PS(Z2: K(B)PS(ZAK(A)PS(cl|A,B)))
= PS(Zs K(B)Za K(A)K(clA,B))

o |PS(c)l ¢ IK(B)IxIK(A)Ix|K(C|A,B)



Inference

® Worst-case running time is still
exponential.

® Preliminary experiments show algorithm to
be efficient in practice.

® Conjecture: algorithm has polynomial
expected running time (based on
properties of Pareto sets).



€-Pareto Dominance

® We say that a potential Pl (X) €-Pareto
dominates a potential P2(X) iff

® Pl(x) = (1+&)P2(x), for all x,
® £¢>0.

® Notation: Pl (X) >¢ P2(X).

® P|(X) almost dominates P2(X).



€-Pareto Set

® Given a credal set K(X)

® The €-Pareto set PSe(X) is a subset of K(X)
such that for each potential P’(X) in K(X)
not in PSe(X) there is some potential in PSe
(X) that €-Pareto dominates P’(X).

® PSe(X) :={ P(X) in K(X): there is no
P’(X) in K(X) such that P’(X) >¢ P(X) for
all P(X)}.

® |PSe(X)| =< |K(X)|.



Results

o Let K(X)=K(Y)K(Z).

® Theorem.There is a PS¢(X) that is size
polynomial in |[K(Y)| and |K(Z)| and in |/€
(but not in | X]).

® Given a credal set, we can construct an €-
pareto set in polynomial time.



Bucket Elimination

® Assume an ordering Xl,...,Xn of the
variables in X.

® Start with an ordered partition
bucket I,...,bucket n of K.

® bucket i contains all credal sets whose
highest variable is Xi instantiated at q.

® Recursion:fori:=nto |, do:

® Compute PSe(U[|V) = PSe(2xiQ [ Ibucketi Kj)
and add it to the largest-index variable
bucket.



Results

® Theorem. Bucket elimination with &-
Pareto set propagation is an FPTAS.

® max p(q) < (I+€) max PSe(q)



Future

Experiments (w/ both exact and approx.).
Complexity results for exact.

Selecting good orderings (not like the
Bayesian case).

Different queries (maximality, e-
admissibility, maximin).



Questions!



