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Bayesian Hierarchical Modelling, a.k.a. Bayesian (Belief)
Networks, a.k.a. Graphical Models

I many names for the same thing (it’s a powerful tool),
I will use the term Bayesian Networks (BNs)

I BNs as a unifying way to think about (Bayesian) statistical
models

I how to build complex Bayesian models out of simple building
blocks

I how to specify joint distributions (over many variables)
via univariate distributions
using conditional independence assumptions

I conditional independence assumptions are visualized by a graph
I the graph can establish a hierarchy between variables
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Bayesian Networks: Simple Example
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∼ Beta(n(0), y (0))
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Another Example: Linear Regression

yi

τ

i = 1, . . . , n

µixi

xi

β1

β1

β2

β2

a b

m1 t1 m2t2

graph:
cond. indep. relations

yi = β1 + xiβ2 + εi , where εi
iid∼ N(0, σ2)

yi | µi , τ ∼ N(µi , 1/τ), where µi = β1 + xiβ2

I yi | β1, β2, τ ∼ N(β1 + xiβ2, 1/τ)

τ | a, b ∼ Gamma(a, b)

a = b = 10−3

β1 | m1, t1 ∼ N(m1, 1/t1)

β2 | m2, t2 ∼ N(m2, 1/t2)

m1 = m2 = 0, t1 = t2 = 104

variables:
conditional distributions
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Bayesian Networks: Why?

I conditional independence reduces model complexity
(10 binary variables: joint distribution has 1023 parameters)

I BNs enable us to construct probability distributions that
capture the important dependencies between the relevant
variables in a given inference problem while keeping models
(relatively) simple

I often: BN = discrete variables only, distributions defined via
conditional probability tables (CPTs)

I What kind of graphs work for expressing conditional
independence relations?
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Bayesian Networks: Directed Acyclic Graphs

Definition (Directed Graph)
A directed graph G = (V ,E ) consists of a set of vertices V and a
set of edges E , where E ⊂ V × V . An arrow leads from u ∈ V to
v ∈ V if and only if (u, v) ∈ E ; u is the source and v is the target
of edge (u, v).

Definition (Paths and Cycles)
A path in a graph is an ordered set of edges {ei} such that
t(ei ) = s(ei+1) (chain of head-to-tail arrows). A cycle is a path
such that t(eN) = s(e1), where N is the number of edges in the
path.

Definition (Directed Acyclic Graph)
A directed acyclic graph (DAG) is a directed graph that does not
contain a cycle, i.e. there does not exist a subset of edges that
forms a cycle.
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Bayesian Networks: Formal Definition

Definition (Bayesian Network)
Given a DAG G = (V ,E ), and variables xV = {xv}v∈V , a Bayesian
network with respect to G and xV is a joint probability distribution
for the xV of the form:

f (xV ) =
∏

v∈V
f
(
xv
∣∣ xpa(v)

)

where pa(v) is the set of parents of v , i.e. the set of vertices u
such that (u, v) is an edge.

I joint distribution factorizes according to the graph!
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Bayesian Networks: Factorization of the joint

One can always factorize a joint distribution by

f (x1, . . . , xK ) = f (xK | x1, . . . , xK−1) f (xK−1 | x1, . . . , xK−2)

· · · f (x3 | x1, x2) f (x2 | x1) f (x1)

I corresponds to a fully connected graph: there is a link between
every pair of vertices (each of the K vertices has incoming
edges from all lower-numbered vertices)

I sparser graph =⇒ nodes have fewer parents
=⇒ less complex joint
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Factorization of the joint: Example

yi

τ

i = 1, . . . , n

xi

β1 β2

a b

m1 t1 m2t2

omitting the fixed values in notation:
the joint distribution

f (y1, . . . , yn, β1, β2, τ)

=
n∏

i=1

f (yi | β1, β2, τ) f (β1) f (β2) f (τ)

f (y1, . . . , yn, β1, β2, τ)

=
n∏

i=1

f (yi | β1, β2, τ)

︸ ︷︷ ︸
likelihood

f (β1) f (β2) f (τ)︸ ︷︷ ︸
prior

is ∝ posterior f (β1, β2, τ | y1, . . . , yn)

I it would be really useful to get posterior estimates based on
the non-normalized density f (y1, . . . , yn, β1, β2, τ) !
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Bayesian Networks: Inference

I Markov Chain Monte Carlo:
simulate samples from the joint ∝ posterior (I next block!)

I can get any distributions for any (set of) variables in the graph
by conditioning and marginalizing of the joint

I for a set of M samples from the joint,
{βm1 , βm2 , τm},m = 1, . . . ,M,

I marginalizing = use only, e.g., {βm
1 },m = 1, . . . ,M

I conditioning = use only samples m with the right value of the
conditioning parameter(s)
(or redo the sampling with fixed conditioned values)
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Bayesian Networks with Imprecise Probability

I use sets of conditional distributions at nodes: credal networks
(see, e.g., [2, §10], [17])

I specific algorithms for discrete credal networks
(see, e.g., [2, §10.5.3], or [14])

I conditional independence with IP gets very non-trivial
(see, e.g., [2, §4] for the gory details)

I here: do sensitivity analysis by varying prior distributions in
sets: f (β1) ∈Mβ1 , . . .
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Other Graph-Based Methods: SEM, Path AnalysisArmin Monecke, Friedrich Leisch 5

Complaints

Loyalty
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Expectation Quality
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Value

CUEX1

CUEX2

CUEX3
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IMAG1

IMAG2

IMAG3

IMAG4

IMAG5

CUSL1

CUSL2

CUSL3

PERQ1

PERQ2

PERQ3

PERQ4

PERQ5

PERQ6

PERQ7

CUSA1

CUSA2

CUSA3PERV1

PERV2

Figure 1: The graph represents the nomological network of the ECSI model for mobile phone
provider (Tenenhaus et al. 2005). LVs are displayed in ellipses and MVs are displayed in
boxes.

digraphs. A digraph is called simple if it has no loops and at most one arc between any pair of
nodes. A digraph is connected if an undirected path between any two nodes exits; consequently
no node is isolated from the rest.

2.1. The structural model

In the structural model, also called inner model, the LVs are related with each other according
to substantive theory. LVs are divided into two classes, exogenous and endogenous. Exogenous
LVs do not have any predecessor in the structural model, all others are endogenous. The
structural model for the ECSI model is depicted by Figure 2. The only exogenous LV in the
ECSI model is Image. The graph can be described by an adjacency matrix D as displayed in
Table 1.

For the benefit simplicity the notation we use for the structural model dismisses the difference
between exogenous and endogenous variables and we start with the compact form

Y = Y B +Z (1)
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Other Graph-Based Methods: SEM, Path Analysis
I Structural Equation Modeling (SEM, a.k.a. path modeling)

uses graphs like BNs, but is something different

I used to estimate latent constructs by assuming linear
relationships with measurements (measurement / outer model)
and relationships between latent constructs (structural model)

I example: customer satisfaction is measured by survey
questions 1 and 2 (measurement model); brand loyality is a
function of customer satisfaction (structural model)

I estimation of factor loadings ( = regression coefficients)

I likelihood-based (R package lavaan):
models expectations and (co)variances, not full distributions
(→ multivariate normal)

I Bayesian SEM: (R package blavaan)
I partial least squares (R package semPLS):

iterative fitting of latent variable values
and regression coefficients via least squares

I path analysis: special case where a measurement can be linked
to only one construct
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questions 1 and 2 (measurement model); brand loyality is a
function of customer satisfaction (structural model)

I estimation of factor loadings ( = regression coefficients)
I likelihood-based (R package lavaan):

models expectations and (co)variances, not full distributions
(→ multivariate normal)

I Bayesian SEM: (R package blavaan)

I partial least squares (R package semPLS):
iterative fitting of latent variable values
and regression coefficients via least squares
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Bayesian hierarchical modelling, simulation and MCMC
Outline

Bayesian hierarchical modelling / Bayesian networks / graphical
models

Exercises I

Simulation & MCMC

Exercises II
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Exercise 1: Factorization of a Joint

Which factorization of
f
(
{xi}i∈[1,...,7]

)

does this graph encode?

x6 x7

x4 x5

x2 x3

x1
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Exercise 2: Naive Bayes Classifier

The naive Bayes classifier from Part 6 assumes that the joint
distribution of class c and attributes a1, . . . , ak can be factorized as

p(c , a) = p(c)p(a | c) = p(c)
k∏

i=1

p(ai | c).

Draw the corresponding DAG!
(Hint: use either a plate or consider two attributes a1 and a2 only.)
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Exercise 3: Naive Bayes Classifier with Dirichlet Priors
We can introduce parameters for p(c) and p(ai | c):

(n(c))c∈C ∼ Multinomal(θc ; c ∈ C) (36)
∀c ∈ C : (n(ai , c))ai∈Ai | c ∼ Multinomal(θai |c ; ai ∈ Ai ) (37)

where C denotes the set of all possible class values, and Ai denotes
the set of all possible values of attribute i .

The θ parameters can be estimated using a Dirichlet prior:

(θc)c∈C ∼ Dir(s, (t(c))c∈C) (38)
∀c ∈ C : (θai |c)ai∈Ai | c ∼ Dir(s, (t(ai , c))ai∈Ai ) (39)

where we must have that
∑

ai∈Ai
t(ai , c) = t(c). [Note that t(c) is

the prior expectation of θc and t(ai , c)/t(c) is the prior expectation
of θai |c .]

Draw the corresponding graph!
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Exercise 4: Sensitivity Analysis

yi

τ

i = 1, . . . , n

xi

β1 β2

a b

m1 t1 m2t2

In the linear regression example there are
6 hyperparameters m1, t1,m2, t2, a, b.

How would you do sensitivity analysis
over the prior in that example? What
problems do you foresee?
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Outline
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Simulation & Markov Chain Monte Carlo: What? Why?

I BNs allow us to formulate complex models

I complex variance structures, . . .

I joint ∝ posterior usually intractable: how to do inference?
I simulate samples from joint / posterior: approximate . . .

I . . . posterior cdf by empirical cdf (density: kernel dens. est.)
I . . . posterior expectation by sample mean
I . . . any function of posterior parameters by sample equivalent

I first: quick look at sampling from univariate distributions
I then: MCMC for sampling from multivariate distributions
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Monte Carlo Estimation: Why does it work?
I want to estimate E (g(X )) =

∫
g(x) f (x | . . .) dx

I Monte Carlo sample x1, . . . , xM (M samples drawn from f (x | ...))

I estimate E (g(X )) by ̂E (g(X )) =
1
M

M∑

i=1

g(xi )

I unbiased: E
(

̂E (g(X ))
)

= E (g(X ))

I variance: Var
(

̂E (g(X ))
)

=
1
M

Var (g(X ))

for independent samples only!
I precision of MC estimate increases with M, independent of

parameter dimension! (numeric integration: number of
evaluation points increases exponentially with dimension)

I lim
M→∞

̂E (g(X ))
a.s.−−→ E (g(X )) (strong law of large numbers)

I ̂E (g(X ))
a.s.∼ N

(
E (g(X )) , 1

MVar (g(X ))
)
(central limit thm)
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Simulation & MCMC: Univariate Sampling

I assumption for all sampling algorithms:
we can sample from the uniform U([0, 1])

I done by pseudo-random number generator (PNRG), in R: ?RNG

I does not work
well in
dimensions > 1

I needs F−1(·)
I needs

normalization
factor

I rejection
sampling a0

F (a)

1

a1 a2 a3 a4 a5

u

x0

F (x)

1

u
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Simulation & MCMC: Rejection Sampling

z0 z

u0

kq(z0) kq(z)

p̃(z)

p̃(z) ∝ target density
q(z) proposal density

1. sample z (↔) from q(z)

2. sample u ( l ) from U([0, kq(z)])

3. reject all points in the grey area
4. forget about u: z distributed ∝ p̃(z)!

sample points uniformly from
union of white and grey areas
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Markov Chain Monte Carlo: General Idea

I need to sample from high-dimensional distributions

I idea: produce samples by a Markov Chain:
random walk over parameter space

I random walk spends more time in high-probability regions
I if in each step we move in one dimension only:

need to sample from one-dimensional distribution only,
can use previous algorithms for that!

I but: samples are not independent!
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Markov Chain Monte Carlo: Algorithms

I Metropolis-Hastings:

I propose a step
(draw from easy-to-sample-from proposal distribution)

I accept step with certain probability
(tailored to make chain approach the target distribution)

I Stan uses an improved variant called Hamiltonian MH

I Gibbs sampler:

I loop over parameter vector (θ1, θ2, . . .)
I draw from the full conditionals f (θi | everything else) ∝ joint
I special case of MH where proposals are always accepted
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I special case of MH where proposals are always accepted

277



Markov Chain Monte Carlo: Algorithms

I Metropolis-Hastings:
I propose a step

(draw from easy-to-sample-from proposal distribution)
I accept step with certain probability

(tailored to make chain approach the target distribution)
I Stan uses an improved variant called Hamiltonian MH

I Gibbs sampler:
I loop over parameter vector (θ1, θ2, . . .)
I draw from the full conditionals f (θi | everything else) ∝ joint
I special case of MH where proposals are always accepted

277



Markov Chain Monte Carlo: Why does this work?

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

X1 X2 . . . XT−1 XT

f (x2 | x1) = · · · = f (xn | xn−1)

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

1 2

3 4

0.4

0.6

0.5

0.50.2

0.8

0.7

0.3

5
0.1

1

1 1

1 1

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

(
p1(t), p2(t), p3(t), p4(t)

) t →∞ (
p1, p2, p3, p4

)

278



Markov Chain Monte Carlo: Why does this work?

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

X1 X2 . . . XT−1 XT

f (x2 | x1) = · · · = f (xn | xn−1)

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

1 2

3 4

0.4

0.6

0.5

0.50.2

0.8

0.7

0.3

5
0.1

1

1 1

1 1

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

(
p1(t), p2(t), p3(t), p4(t)

) t →∞ (
p1, p2, p3, p4

)

278



Markov Chain Monte Carlo: Why does this work?

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

X1 X2 . . . XT−1 XT

f (x2 | x1) = · · · = f (xn | xn−1)

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

1 2

3 4

0.4

0.6

0.5

0.50.2

0.8

0.7

0.3

5
0.1

1

1 1

1 1

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

(
p1(t), p2(t), p3(t), p4(t)

) t →∞ (
p1, p2, p3, p4

)

278



Markov Chain Monte Carlo: Why does this work?

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

X1 X2 . . . XT−1 XT

f (x2 | x1) = · · · = f (xn | xn−1)

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

1 2

3 4

0.4

0.6

0.5

0.50.2

0.8

0.7

0.3

5
0.1

1

1 1

1 1

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

(
p1(t), p2(t), p3(t), p4(t)

) t →∞ (
p1, p2, p3, p4

)

278



Markov Chain Monte Carlo: Why does this work?

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

X1 X2 . . . XT−1 XT

f (x2 | x1) = · · · = f (xn | xn−1)

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

1 2

3 4

0.4

0.6

0.5

0.50.2

0.8

0.7

0.3

5
0.1

1

1 1

1 1

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

(
p1(t), p2(t), p3(t), p4(t)

) t →∞ (
p1, p2, p3, p4

)

278



Markov Chain Monte Carlo: Why does this work?

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

X1 X2 . . . XT−1 XT

f (x2 | x1) = · · · = f (xn | xn−1)

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

1 2

3 4

0.4

0.6

0.5

0.50.2

0.8

0.7

0.3

5
0.1

1

1 1

1 1

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

(
p1(t), p2(t), p3(t), p4(t)

) t →∞ (
p1, p2, p3, p4

)

278



Markov Chain Monte Carlo: Why does this work?

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

X1 X2 . . . XT−1 XT

f (x2 | x1) = · · · = f (xn | xn−1)

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

1 2

3 4

0.4

0.6

0.5

0.50.2

0.8

0.7

0.3

5
0.1

1

1 1

1 1

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

(
p1(t), p2(t), p3(t), p4(t)

) t →∞ (
p1, p2, p3, p4

)

278



Markov Chain Monte Carlo: Why does this work?

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

X1 X2 . . . XT−1 XT

f (x2 | x1) = · · · = f (xn | xn−1)

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

1 2

3 4

0.4

0.6

0.5

0.50.2

0.8

0.7

0.3

5
0.1

1

1 1

1 1

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

(
p1(t), p2(t), p3(t), p4(t)

) t →∞ (
p1, p2, p3, p4

)

278



Markov Chain Monte Carlo: Why does this work?

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

X1 X2 . . . XT−1 XT

f (x2 | x1) = · · · = f (xn | xn−1)

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

1 2

3 4

0.4

0.6

0.5

0.50.2

0.8

0.7

0.3

5
0.1

1

1 1

1 1

Algorithms create a
I stationary,
I irreducible and
I aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

(
p1(t), p2(t), p3(t), p4(t)

) t →∞ (
p1, p2, p3, p4

)

278



MCMC: Warm-Up ( = Burn-In), Mixing, Thinning
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Bayesian hierarchical modelling, simulation and MCMC
Outline

Bayesian hierarchical modelling / Bayesian networks / graphical
models

Exercises I

Simulation & MCMC

Exercises II
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Exercise: Quick start RStan

A Stan model is defined by five program blocks:

model1 <- "
data {

...
}
transformed data {

...
}
parameters {

...
}
transformed parameters {

...
}
model {

...
}
generated quantities {

...
}"

required

required
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Exercise: Quick start RStan

x

θ

a b

f (x | θ) ∼ Binomial(n, θ)

f (θ | a, b) ∼ Beta(a, b)

library(rstan)
model0 <- "
data {

int <lower=0> n;
int <lower=0> x;

}
parameters {

real <lower=0,upper=1> theta;
}
model {

theta ∼ beta (2 ,2);
x ∼ binomial(n, theta );

}
"
data0 <- list(n=10, x=5)
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Exercise: Quick start RStan

x

θ

a b

f (x | θ) ∼ Binomial(n, θ)

f (θ | a, b) ∼ Beta(a, b)

library(rstan)
model0 <- "
data {

int <lower=0> n;
int <lower=0> x;

}
parameters {

real <lower=0,upper=1> theta;
}
model {

theta ∼ beta (2 ,2);
x ∼ binomial(n, theta );

}
"
data0 <- list(n=10, x=5)

Running the model creates a stanfit object.
fit0 <- stan(model_code=model0 , data=data0 , iter =1000, chains =4)
print(fit0); plot(fit0)
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Exercise: Quick start RStan

x

θ

a b

f (x | θ) ∼ Binomial(n, θ)

f (θ | a, b) ∼ Beta(a, b)

library(rstan)
model0 <- "
data {

int <lower=0> n;
int <lower=0> x;

}
parameters {

real <lower=0,upper=1> theta;
}
model {

theta ∼ beta (2 ,2);
x ∼ binomial(n, theta );

}
"
data0 <- list(n=10, x=5)

Running the model creates a stanfit object.
fit0 <- stan(model_code=model0 , data=data0 , iter =1000, chains =4)
print(fit0); plot(fit0)

The samples can be extracted by samples0 = extract(fit0, c("theta"))
http://mc-stan.org/documentation/

http://github.com/stan-dev/rstan/wiki/RStan-Getting-Started#how-to-use-rstan
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Exercise: Linear regression in RStan

yi

τ

i = 1, . . . , n

xi

β1 β2

a b

m1 t1 m2t2 We want to estimate the parameters in
the linear regression example, using
RStan to sample from the posterior.

The model assumptions are:

yi | β1, β2, τ ∼ N(β1 + xiβ2, 1/τ)

τ | a, b ∼ Gamma(a, b), a = b = 10−3

β1 | m1, t1 ∼ N(m1, 1/t1), m1 = 0, t1 = 104

β2 | m2, t2 ∼ N(m2, 1/t2), m2 = 0, t2 = 104
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Exercise: Linear regression in RStan

I Create an artificial data set x1, . . . , xn, y1, . . . , yn by
data <- list()
data$N <- 50
data$x <- rnorm(data$N)+30
data$y <- 3 + 5*data$x + rnorm(data$N, sd=1/10)

What are thus the ‘true’ parameter values?
I Define the model in Stan. Include a transformed

parameters block where you define σ =
√

1/τ . (In Stan, the
Normal distribution is parametrized with the standard deviation σ!)

I Simulate four chains with 1000 iterations each and use
plot() and print() to get a first impression of the results.
What point estimates do you get for β1, β2 and σ?
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Exercise: Linear regression in RStan

I The functions stan_trace(), stan_dens() and stan_ac()
allow you to analyze your sample from the posterior
distribution more closely. (You can include the warm-up phase
in your plots by setting inc_warmup = TRUE.)
How long is the warm-up phase? Do your chains mix well?
Is thinning necessary?

I The function pairs() also works on stanfit objects.
Plot pairwise scatterplots of your sample using pairs().
What do you observe about the relation between β1 and β2?
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Exercise: Linear regression in RStan
I The high correlation between β1 and β2 indicates that the

Markov chain cannot move around freely. You can mitigate
this problem by centering the data x1, . . . , xn. The mean for
the Normal distribution of yi is then given by βc1 + β2(xi − x̄),
where βc1 = β1 + β2x̄ .
Add the following block to your stan model definition,
transformed data {

vector[N] xcentered;
xcentered=x-mean(x);

}

and edit the parameters and model blocks such that the
model generates samples from βc1 instead of β1.

I Edit the transformed parameters block to define β1 as
β1 = βc1 + β2x̄ .

I Simulate four chains with 1000 iterations each from this new
model, and analyze your sample from the posterior distribution
like for the first model. What has changed?
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Exercise: Linear regression in RStan

I Choose an informative prior for one or both of β1 and β2.
Try out different values for mean and standard deviation.
What is the effect on the chains and the posterior densities?
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