Wednesday 14:00-17:30

Part 7

Bayesian hierarchical modelling, simulation and MCMC

by Gero Walter

Bayesian hierarchical modelling, simulation and MCMC

 OutlineBayesian hierarchical modelling / Bayesian networks / graphical models

Exercises I

Simulation \& MCMC

Exercises II

Bayesian Hierarchical Modelling, a.k.a. Bayesian (Belief)

 Networks, a.k.a. Graphical Models- many names for the same thing (it's a powerful tool), I will use the term Bayesian Networks (BNs)
- BNs as a unifying way to think about (Bayesian) statistical models
- how to build complex Bayesian models out of simple building blocks
- how to specify joint distributions (over many variables) via univariate distributions using conditional independence assumptions
- conditional independence assumptions are visualized by a graph
- the graph can establish a hierarchy between variables

Bayesian Networks: Simple Example

Another Example: Linear Regression

Another Example: Linear Regression

Another Example: Linear Regression

Another Example: Linear Regression

$$
\begin{aligned}
& y_{i} \mid \mu_{i}, \tau \sim \mathrm{~N}\left(\mu_{i}, 1 / \tau\right), \quad \text { where } \mu_{i}=\beta_{1}+x_{i} \beta_{2} \\
& \text { - } y_{i} \mid \beta_{1}, \beta_{2}, \tau \sim \mathrm{~N}\left(\beta_{1}+x_{i} \beta_{2}, 1 / \tau\right) \\
& \tau \mid a, b \sim \operatorname{Gamma}(a, b) \\
& a=b=10^{-3} \\
& \beta_{1} \mid m_{1}, t_{1} \sim \mathrm{~N}\left(m_{1}, 1 / t_{1}\right) \\
& \beta_{2} \mid m_{2}, t_{2} \sim \mathrm{~N}\left(m_{2}, 1 / t_{2}\right) \\
& m_{1}=m_{2}=0, \quad t_{1}=t_{2}=10^{4}
\end{aligned}
$$

Another Example: Linear Regression

$$
\begin{aligned}
& \text { (1) } \quad y_{i}=\beta_{1}+x_{i} \beta_{2}+\varepsilon_{i}, \quad \text { where } \varepsilon_{i} \stackrel{t_{2}}{\sim} \\
& \text { 病 } \mid \mu_{i}, \tau \sim \mathrm{~N}\left(\mu_{i}, 1 / \tau\right) \text {, where } \mu_{i}=\beta_{1}+x_{i} \beta_{2} \\
& \rightarrow y_{i} \mid \beta_{1}, \beta_{2}, \tau \sim \mathrm{~N}\left(\beta_{1}+x_{i} \beta_{2}, 1 / \tau\right) \\
& \tau \mid a, b \sim \operatorname{Gamma}(a, b) \\
& a=b=10^{-3} \\
& \beta_{1} \mid m_{1}, t_{1} \sim \mathrm{~N}\left(m_{1}, 1 / t_{1}\right) \\
& \beta_{2} \mid m_{2}, t_{2} \sim \mathrm{~N}\left(m_{2}, 1 / t_{2}\right) \\
& m_{1}=m_{2}=0, \quad t_{1}=t_{2}=10^{4}
\end{aligned}
$$

graph:
cond. indep. relations
variables:
conditional distributions

Bayesian Networks: Why?

- conditional independence reduces model complexity (10 binary variables: joint distribution has 1023 parameters)

Bayesian Networks: Why?

- conditional independence reduces model complexity (10 binary variables: joint distribution has 1023 parameters)
- BNs enable us to construct probability distributions that capture the important dependencies between the relevant variables in a given inference problem while keeping models (relatively) simple

Bayesian Networks: Why?

- conditional independence reduces model complexity (10 binary variables: joint distribution has 1023 parameters)
- BNs enable us to construct probability distributions that capture the important dependencies between the relevant variables in a given inference problem while keeping models (relatively) simple
- often: $\mathrm{BN}=$ discrete variables only, distributions defined via conditional probability tables (CPTs)

Bayesian Networks: Why?

- conditional independence reduces model complexity (10 binary variables: joint distribution has 1023 parameters)
- BNs enable us to construct probability distributions that capture the important dependencies between the relevant variables in a given inference problem while keeping models (relatively) simple
- often: $\mathrm{BN}=$ discrete variables only, distributions defined via conditional probability tables (CPTs)
- What kind of graphs work for expressing conditional independence relations?

Bayesian Networks: Directed Acyclic Graphs

Definition (Directed Graph)
A directed graph $G=(V, E)$ consists of a set of vertices V and a set of edges E, where $E \subset V \times V$. An arrow leads from $u \in V$ to $v \in V$ if and only if $(u, v) \in E ; u$ is the source and v is the target of edge (u, v).

Bayesian Networks: Directed Acyclic Graphs

Definition (Directed Graph)
A directed graph $G=(V, E)$ consists of a set of vertices V and a set of edges E, where $E \subset V \times V$. An arrow leads from $u \in V$ to $v \in V$ if and only if $(u, v) \in E ; u$ is the source and v is the target of edge (u, v).

Definition (Paths and Cycles)
A path in a graph is an ordered set of edges $\left\{e_{i}\right\}$ such that $t\left(e_{i}\right)=s\left(e_{i+1}\right)$ (chain of head-to-tail arrows). A cycle is a path such that $t\left(e_{N}\right)=s\left(e_{1}\right)$, where N is the number of edges in the path.

Bayesian Networks: Directed Acyclic Graphs

Definition (Directed Graph)

A directed graph $G=(V, E)$ consists of a set of vertices V and a set of edges E, where $E \subset V \times V$. An arrow leads from $u \in V$ to $v \in V$ if and only if $(u, v) \in E ; u$ is the source and v is the target of edge (u, v).

Definition (Paths and Cycles)
A path in a graph is an ordered set of edges $\left\{e_{i}\right\}$ such that $t\left(e_{i}\right)=s\left(e_{i+1}\right)$ (chain of head-to-tail arrows). A cycle is a path such that $t\left(e_{N}\right)=s\left(e_{1}\right)$, where N is the number of edges in the path.

Definition (Directed Acyclic Graph)

A directed acyclic graph (DAG) is a directed graph that does not contain a cycle, i.e. there does not exist a subset of edges that forms a cycle.

Bayesian Networks: Formal Definition

Definition (Bayesian Network)

Given a DAG $G=(V, E)$, and variables $x_{V}=\left\{x_{v}\right\}_{v \in V}$, a Bayesian network with respect to G and x_{V} is a joint probability distribution for the x_{V} of the form:

$$
f\left(x_{V}\right)=\prod_{v \in V} f\left(x_{v} \mid x_{\mathrm{pa}(v)}\right)
$$

where $\mathrm{pa}(v)$ is the set of parents of v, i.e. the set of vertices u such that (u, v) is an edge.

Bayesian Networks: Formal Definition

Definition (Bayesian Network)

Given a DAG $G=(V, E)$, and variables $x_{V}=\left\{x_{v}\right\}_{v \in V}$, a Bayesian network with respect to G and x_{V} is a joint probability distribution for the x_{V} of the form:

$$
f\left(x_{V}\right)=\prod_{v \in V} f\left(x_{V} \mid x_{\mathrm{pa}(v)}\right)
$$

where $\mathrm{pa}(v)$ is the set of parents of v, i.e. the set of vertices u such that (u, v) is an edge.

- joint distribution factorizes according to the graph!

Bayesian Networks: Factorization of the joint

One can always factorize a joint distribution by

$$
\begin{array}{rl}
f\left(x_{1}, \ldots, x_{K}\right)=f & f\left(x_{K} \mid x_{1}, \ldots, x_{K-1}\right) f\left(x_{K-1} \mid x_{1}, \ldots, x_{K-2}\right) \\
& \cdots f\left(x_{3} \mid x_{1}, x_{2}\right) f\left(x_{2} \mid x_{1}\right) f\left(x_{1}\right)
\end{array}
$$

Bayesian Networks: Factorization of the joint

One can always factorize a joint distribution by

$$
\begin{array}{rl}
f\left(x_{1}, \ldots, x_{K}\right)=f & f\left(x_{K} \mid x_{1}, \ldots, x_{K-1}\right) f\left(x_{K-1} \mid x_{1}, \ldots, x_{K-2}\right) \\
& \cdots f\left(x_{3} \mid x_{1}, x_{2}\right) f\left(x_{2} \mid x_{1}\right) f\left(x_{1}\right)
\end{array}
$$

- corresponds to a fully connected graph: there is a link between every pair of vertices (each of the K vertices has incoming edges from all lower-numbered vertices)

Bayesian Networks: Factorization of the joint

One can always factorize a joint distribution by

$$
\begin{array}{rl}
f\left(x_{1}, \ldots, x_{K}\right)=f & f\left(x_{K} \mid x_{1}, \ldots, x_{K-1}\right) f\left(x_{K-1} \mid x_{1}, \ldots, x_{K-2}\right) \\
& \cdots f\left(x_{3} \mid x_{1}, x_{2}\right) f\left(x_{2} \mid x_{1}\right) f\left(x_{1}\right)
\end{array}
$$

- corresponds to a fully connected graph: there is a link between every pair of vertices (each of the K vertices has incoming edges from all lower-numbered vertices)
- sparser graph \Longrightarrow nodes have fewer parents
\Longrightarrow less complex joint

Factorization of the joint: Example

Factorization of the joint: Example

omitting the fixed values in notation: the joint distribution

$$
\begin{aligned}
& f\left(y_{1}, \ldots, y_{n}, \beta_{1}, \beta_{2}, \tau\right) \\
= & \prod_{i=1}^{n} f\left(y_{i} \mid \beta_{1}, \beta_{2}, \tau\right) f\left(\beta_{1}\right) f\left(\beta_{2}\right) f(\tau)
\end{aligned}
$$

Factorization of the joint: Example

omitting the fixed values in notation: the joint distribution

$$
\begin{aligned}
& f\left(y_{1}, \ldots, y_{n}, \beta_{1}, \beta_{2}, \tau\right) \\
= & \underbrace{\prod_{i=1}^{n} f\left(y_{i} \mid \beta_{1}, \beta_{2}, \tau\right)}_{\text {likelihood }} \underbrace{f\left(\beta_{1}\right) f\left(\beta_{2}\right) f(\tau)}_{\text {prior }}
\end{aligned}
$$

is \propto posterior $f\left(\beta_{1}, \beta_{2}, \tau \mid y_{1}, \ldots, y_{n}\right)$

Factorization of the joint: Example

omitting the fixed values in notation: the joint distribution

$$
\begin{aligned}
& f\left(y_{1}, \ldots, y_{n}, \beta_{1}, \beta_{2}, \tau\right) \\
= & \underbrace{\prod_{i=1}^{n} f\left(y_{i} \mid \beta_{1}, \beta_{2}, \tau\right)}_{\text {likelihood }} \underbrace{f\left(\beta_{1}\right) f\left(\beta_{2}\right) f(\tau)}_{\text {prior }}
\end{aligned}
$$

is \propto posterior $f\left(\beta_{1}, \beta_{2}, \tau \mid y_{1}, \ldots, y_{n}\right)$

- it would be really useful to get posterior estimates based on the non-normalized density $f\left(y_{1}, \ldots, y_{n}, \beta_{1}, \beta_{2}, \tau\right)$!

Bayesian Networks: Inference

- Markov Chain Monte Carlo: simulate samples from the joint \propto posterior (\downarrow next block!)

Bayesian Networks: Inference

- Markov Chain Monte Carlo: simulate samples from the joint \propto posterior (\downarrow next block!)
- can get any distributions for any (set of) variables in the graph by conditioning and marginalizing of the joint

Bayesian Networks: Inference

- Markov Chain Monte Carlo: simulate samples from the joint \propto posterior (\downarrow next block!)
- can get any distributions for any (set of) variables in the graph by conditioning and marginalizing of the joint
- for a set of M samples from the joint, $\left\{\beta_{1}^{m}, \beta_{2}^{m}, \tau^{m}\right\}, m=1, \ldots, M$,

Bayesian Networks: Inference

- Markov Chain Monte Carlo: simulate samples from the joint \propto posterior (\downarrow next block!)
- can get any distributions for any (set of) variables in the graph by conditioning and marginalizing of the joint
- for a set of M samples from the joint, $\left\{\beta_{1}^{m}, \beta_{2}^{m}, \tau^{m}\right\}, m=1, \ldots, M$,
- marginalizing $=$ use only, e.g., $\left\{\beta_{1}^{m}\right\}, m=1, \ldots, M$

Bayesian Networks: Inference

- Markov Chain Monte Carlo: simulate samples from the joint \propto posterior (\downarrow next block!)
- can get any distributions for any (set of) variables in the graph by conditioning and marginalizing of the joint
- for a set of M samples from the joint, $\left\{\beta_{1}^{m}, \beta_{2}^{m}, \tau^{m}\right\}, m=1, \ldots, M$,
- marginalizing $=$ use only, e.g., $\left\{\beta_{1}^{m}\right\}, m=1, \ldots, M$
- conditioning = use only samples m with the right value of the conditioning parameter(s) (or redo the sampling with fixed conditioned values)

Bayesian Networks with Imprecise Probability

- use sets of conditional distributions at nodes: credal networks (see, e.g., [2, §10], [17])

Bayesian Networks with Imprecise Probability

- use sets of conditional distributions at nodes: credal networks (see, e.g., [2, §10], [17])
- specific algorithms for discrete credal networks (see, e.g., [2, §10.5.3], or [14])

Bayesian Networks with Imprecise Probability

- use sets of conditional distributions at nodes: credal networks (see, e.g., [2, §10], [17])
- specific algorithms for discrete credal networks (see, e.g., [2, §10.5.3], or [14])
- conditional independence with IP gets very non-trivial (see, e.g., $[2, \S 4]$ for the gory details)

Bayesian Networks with Imprecise Probability

- use sets of conditional distributions at nodes: credal networks (see, e.g., [2, §10], [17])
- specific algorithms for discrete credal networks (see, e.g., [2, §10.5.3], or [14])
- conditional independence with IP gets very non-trivial (see, e.g., $[2, \S 4]$ for the gory details)
- here: do sensitivity analysis by varying prior distributions in sets: $f\left(\beta_{1}\right) \in \mathcal{M}_{\beta_{1}}, \ldots$

Other Graph-Based Methods: SEM, Path Analysis

Other Graph-Based Methods: SEM, Path Analysis

Other Graph-Based Methods: SEM, Path Analysis

- Structural Equation Modeling (SEM, a.k.a. path modeling) uses graphs like BNs, but is something different

Other Graph-Based Methods: SEM, Path Analysis

- Structural Equation Modeling (SEM, a.k.a. path modeling) uses graphs like BNs, but is something different
- used to estimate latent constructs by assuming linear relationships with measurements (measurement / outer model) and relationships between latent constructs (structural model)

Other Graph-Based Methods: SEM, Path Analysis

- Structural Equation Modeling (SEM, a.k.a. path modeling) uses graphs like BNs, but is something different
- used to estimate latent constructs by assuming linear relationships with measurements (measurement / outer model) and relationships between latent constructs (structural model)
- example: customer satisfaction is measured by survey questions 1 and 2 (measurement model); brand loyality is a function of customer satisfaction (structural model)

Other Graph-Based Methods: SEM, Path Analysis

- Structural Equation Modeling (SEM, a.k.a. path modeling) uses graphs like BNs, but is something different
- used to estimate latent constructs by assuming linear relationships with measurements (measurement / outer model) and relationships between latent constructs (structural model)
- example: customer satisfaction is measured by survey questions 1 and 2 (measurement model); brand loyality is a function of customer satisfaction (structural model)
- estimation of factor loadings (= regression coefficients)

Other Graph-Based Methods: SEM, Path Analysis

- Structural Equation Modeling (SEM, a.k.a. path modeling) uses graphs like BNs , but is something different
- used to estimate latent constructs by assuming linear relationships with measurements (measurement / outer model) and relationships between latent constructs (structural model)
- example: customer satisfaction is measured by survey questions 1 and 2 (measurement model); brand loyality is a function of customer satisfaction (structural model)
- estimation of factor loadings (= regression coefficients)
- likelihood-based (\mathbf{R} package lavaan): models expectations and (co)variances, not full distributions $(\rightarrow$ multivariate normal)

Other Graph-Based Methods: SEM, Path Analysis

- Structural Equation Modeling (SEM, a.k.a. path modeling) uses graphs like BNs, but is something different
- used to estimate latent constructs by assuming linear relationships with measurements (measurement / outer model) and relationships between latent constructs (structural model)
- example: customer satisfaction is measured by survey questions 1 and 2 (measurement model); brand loyality is a function of customer satisfaction (structural model)
- estimation of factor loadings (= regression coefficients)
- likelihood-based (\mathbf{R} package lavaan): models expectations and (co)variances, not full distributions (\rightarrow multivariate normal)
- Bayesian SEM: (R package blavaan)

Other Graph-Based Methods: SEM, Path Analysis

- Structural Equation Modeling (SEM, a.k.a. path modeling) uses graphs like BNs , but is something different
- used to estimate latent constructs by assuming linear relationships with measurements (measurement / outer model) and relationships between latent constructs (structural model)
- example: customer satisfaction is measured by survey questions 1 and 2 (measurement model); brand loyality is a function of customer satisfaction (structural model)
- estimation of factor loadings (= regression coefficients)
- likelihood-based (R package lavaan): models expectations and (co)variances, not full distributions (\rightarrow multivariate normal)
- Bayesian SEM: (R package blavaan)
- partial least squares (\mathbf{R} package semPLS): iterative fitting of latent variable values and regression coefficients via least squares

Other Graph-Based Methods: SEM, Path Analysis

- Structural Equation Modeling (SEM, a.k.a. path modeling) uses graphs like BNs, but is something different
- used to estimate latent constructs by assuming linear relationships with measurements (measurement / outer model) and relationships between latent constructs (structural model)
- example: customer satisfaction is measured by survey questions 1 and 2 (measurement model); brand loyality is a function of customer satisfaction (structural model)
- estimation of factor loadings (= regression coefficients)
- likelihood-based (R package lavaan): models expectations and (co)variances, not full distributions (\rightarrow multivariate normal)
- Bayesian SEM: (R package blavaan)
- partial least squares (R package semPLS): iterative fitting of latent variable values and regression coefficients via least squares
- path analysis: special case where a measurement can be linked to only one construct

Bayesian hierarchical modelling, simulation and MCMC

 OutlineBayesian hierarchical modelling / Bayesian networks / graphical models

Exercises I

Simulation \& MCMC

Exercises II

Exercise 1: Factorization of a Joint

Which factorization of $f\left(\left\{x_{i}\right\}_{i \in[1, \ldots, 7]}\right)$
does this graph encode?

Exercise 2: Naive Bayes Classifier

The naive Bayes classifier from Part 6 assumes that the joint distribution of class c and attributes a_{1}, \ldots, a_{k} can be factorized as

$$
p(c, a)=p(c) p(a \mid c)=p(c) \prod_{i=1}^{k} p\left(a_{i} \mid c\right)
$$

Draw the corresponding DAG!
(Hint: use either a plate or consider two attributes a_{1} and a_{2} only.)

Exercise 3: Naive Bayes Classifier with Dirichlet Priors

We can introduce parameters for $p(c)$ and $p\left(a_{i} \mid c\right)$:

$$
\begin{align*}
(n(c))_{c \in \mathcal{C}} & \sim \operatorname{Multinomal}\left(\theta_{c} ; c \in \mathcal{C}\right) \tag{36}\\
\forall c \in \mathcal{C}:\left(n\left(a_{i}, c\right)\right)_{a_{i} \in \mathcal{A}_{i}} \mid c & \sim \operatorname{Multinomal}\left(\theta_{a_{i} \mid} \mid c ; a_{i} \in \mathcal{A}_{i}\right) \tag{37}
\end{align*}
$$

where \mathcal{C} denotes the set of all possible class values, and \mathcal{A}_{i} denotes the set of all possible values of attribute i.

The θ parameters can be estimated using a Dirichlet prior:

$$
\begin{align*}
\left(\theta_{c}\right)_{c \in \mathcal{C}} & \sim \operatorname{Dir}\left(s,(t(c))_{c \in \mathcal{C}}\right) \tag{38}\\
\forall c \in \mathcal{C}:\left(\theta_{a_{i} \mid c}\right)_{a_{i} \in \mathcal{A}_{i}} \mid c & \sim \operatorname{Dir}\left(s,\left(t\left(a_{i}, c\right)\right)_{a_{i} \in \mathcal{A}_{i}}\right) \tag{39}
\end{align*}
$$

where we must have that $\sum_{a_{i} \in \mathcal{A}_{i}} t\left(a_{i}, c\right)=t(c)$. [Note that $t(c)$ is the prior expectation of θ_{c} and $t\left(a_{i}, c\right) / t(c)$ is the prior expectation of $\theta_{a_{i} \mid c}$.]

Draw the corresponding graph!

Exercise 4: Sensitivity Analysis

In the linear regression example there are 6 hyperparameters $m_{1}, t_{1}, m_{2}, t_{2}, a, b$.

How would you do sensitivity analysis over the prior in that example? What problems do you foresee?

Bayesian hierarchical modelling, simulation and MCMC

 OutlineBayesian hierarchical modelling / Bayesian networks / graphical models

Exercises I

Simulation \& MCMC

Exercises II

Simulation \& Markov Chain Monte Carlo: What? Why?

- BNs allow us to formulate complex models

Simulation \& Markov Chain Monte Carlo: What? Why?

- BNs allow us to formulate complex models
- complex variance structures, ...

Simulation \& Markov Chain Monte Carlo: What? Why?

- BNs allow us to formulate complex models
- complex variance structures, ...
- joint \propto posterior usually intractable: how to do inference?

Simulation \& Markov Chain Monte Carlo: What? Why?

- BNs allow us to formulate complex models
- complex variance structures, ...
- joint \propto posterior usually intractable: how to do inference?
- simulate samples from joint / posterior: approximate ...

Simulation \& Markov Chain Monte Carlo: What? Why?

- BNs allow us to formulate complex models
- complex variance structures, ...
- joint \propto posterior usually intractable: how to do inference?
- simulate samples from joint / posterior: approximate ...
- ... posterior cdf by empirical cdf (density: kernel dens. est.)

Simulation \& Markov Chain Monte Carlo: What? Why?

- BNs allow us to formulate complex models
- complex variance structures, ...
- joint \propto posterior usually intractable: how to do inference?
- simulate samples from joint / posterior: approximate ...
- ... posterior cdf by empirical cdf (density: kernel dens. est.)
- ... posterior expectation by sample mean

Simulation \& Markov Chain Monte Carlo: What? Why?

- BNs allow us to formulate complex models
- complex variance structures, ...
- joint \propto posterior usually intractable: how to do inference?
- simulate samples from joint / posterior: approximate ...
- ... posterior cdf by empirical cdf (density: kernel dens. est.)
- ... posterior expectation by sample mean
- ... any function of posterior parameters by sample equivalent

Simulation \& Markov Chain Monte Carlo: What? Why?

- BNs allow us to formulate complex models
- complex variance structures, ...
- joint \propto posterior usually intractable: how to do inference?
- simulate samples from joint / posterior: approximate ...
- ... posterior cdf by empirical cdf (density: kernel dens. est.)
- ... posterior expectation by sample mean
- ... any function of posterior parameters by sample equivalent
- first: quick look at sampling from univariate distributions

Simulation \& Markov Chain Monte Carlo: What? Why?

- BNs allow us to formulate complex models
- complex variance structures, ...
- joint \propto posterior usually intractable: how to do inference?
- simulate samples from joint / posterior: approximate ...
- ... posterior cdf by empirical cdf (density: kernel dens. est.)
- ... posterior expectation by sample mean
- ... any function of posterior parameters by sample equivalent
- first: quick look at sampling from univariate distributions
- then: MCMC for sampling from multivariate distributions

Monte Carlo Estimation: Why does it work?

- want to estimate $\mathrm{E}(g(X))=\int g(x) f(x \mid \ldots) d x$

Monte Carlo Estimation: Why does it work?

- want to estimate $\mathrm{E}(g(X))=\int g(x) f(x \mid \ldots) d x$
- Monte Carlo sample x_{1}, \ldots, x_{M} (M samples drawn from $f(x \mid \ldots)$)

Monte Carlo Estimation: Why does it work?

- want to estimate $\mathrm{E}(g(X))=\int g(x) f(x \mid \ldots) d x$
- Monte Carlo sample x_{1}, \ldots, x_{M} (M samples drawn from $f(x \mid \ldots)$)
- estimate $\mathrm{E}(g(X))$ by $\mathrm{E} \widehat{(g(X)})=\frac{1}{M} \sum_{i=1}^{M} g\left(x_{i}\right)$

Monte Carlo Estimation: Why does it work?

- want to estimate $\mathrm{E}(g(X))=\int g(x) f(x \mid \ldots) d x$
- Monte Carlo sample x_{1}, \ldots, x_{M} (M samples drawn from $f(x \mid \ldots)$)
- estimate $\mathrm{E}(g(X))$ by $\mathrm{E} \widehat{(g(X))}=\frac{1}{M} \sum_{i=1}^{M} g\left(x_{i}\right)$
- unbiased: $\mathrm{E}(\widehat{\mathrm{E}(\mathrm{g}(X)}))=\mathrm{E}(g(X))$

Monte Carlo Estimation: Why does it work?

- want to estimate $\mathrm{E}(g(X))=\int g(x) f(x \mid \ldots) d x$
- Monte Carlo sample x_{1}, \ldots, x_{M} (M samples drawn from $f(x \mid \ldots)$)
- estimate $\mathrm{E}(g(X))$ by $\mathrm{E} \widehat{(g(X)})=\frac{1}{M} \sum_{i=1}^{M} g\left(x_{i}\right)$
- unbiased: $\mathrm{E}(\widehat{\mathrm{E}(\mathrm{g}(X)}))=\mathrm{E}(g(X))$
- variance: $\operatorname{Var}(\mathrm{E} \widehat{(g(X)}))=\frac{1}{M} \operatorname{Var}(g(X))$ for independent samples only!

Monte Carlo Estimation: Why does it work?

- want to estimate $\mathrm{E}(g(X))=\int g(x) f(x \mid \ldots) d x$
- Monte Carlo sample x_{1}, \ldots, x_{M} (M samples drawn from $f(x \mid \ldots)$)
- estimate $\mathrm{E}(g(X))$ by $\mathrm{E} \widehat{(g(X)})=\frac{1}{M} \sum_{i=1}^{M} g\left(x_{i}\right)$
- unbiased: $\mathrm{E}(\widehat{\mathrm{E}(X)}))=\mathrm{E}(g(X))$
- variance: $\operatorname{Var}(\mathrm{E} \widehat{(g(X))})=\frac{1}{M} \operatorname{Var}(g(X))$ for independent samples only!
- precision of MC estimate increases with M, independent of parameter dimension! (numeric integration: number of evaluation points increases exponentially with dimension)

Monte Carlo Estimation: Why does it work?

- want to estimate $\mathrm{E}(g(X))=\int g(x) f(x \mid \ldots) d x$
- Monte Carlo sample x_{1}, \ldots, x_{M} (M samples drawn from $f(x \mid \ldots)$)
- estimate $\mathrm{E}(g(X))$ by $\mathrm{E} \widehat{(g(X)})=\frac{1}{M} \sum_{i=1}^{M} g\left(x_{i}\right)$
- unbiased: $\mathrm{E}(\widehat{\mathrm{E}(X)}))=\mathrm{E}(g(X))$
- variance: $\operatorname{Var}(\mathrm{E} \widehat{(g(X))})=\frac{1}{M} \operatorname{Var}(g(X))$ for independent samples only!
- precision of MC estimate increases with M, independent of parameter dimension! (numeric integration: number of evaluation points increases exponentially with dimension)
$\left.-\lim _{M \rightarrow \infty} \mathrm{E} \widehat{(g(X)}\right) \xrightarrow{\text { a.s. }} \mathrm{E}(g(X))$ (strong law of large numbers)

Monte Carlo Estimation: Why does it work?

- want to estimate $\mathrm{E}(g(X))=\int g(x) f(x \mid \ldots) d x$
- Monte Carlo sample x_{1}, \ldots, x_{M} (M samples drawn from $f(x \mid \ldots)$)
- estimate $\mathrm{E}(g(X))$ by $\mathrm{E} \widehat{(g(X)})=\frac{1}{M} \sum_{i=1}^{M} g\left(x_{i}\right)$
- unbiased: $\mathrm{E}(\widehat{\mathrm{E}(X)}))=\mathrm{E}(g(X))$
- variance: $\operatorname{Var}(\mathrm{E} \widehat{(g(X))})=\frac{1}{M} \operatorname{Var}(g(X))$ for independent samples only!
- precision of MC estimate increases with M, independent of parameter dimension! (numeric integration: number of evaluation points increases exponentially with dimension)
- $\left.\lim _{M \rightarrow \infty} \mathrm{E} \widehat{(g(X)}\right) \xrightarrow{\text { a.s. }} \mathrm{E}(g(X))$ (strong law of large numbers)
- $\mathrm{E} \widehat{(g(X))} \stackrel{\text { a.s. }}{\sim} \mathrm{N}\left(\mathrm{E}(g(X)), \frac{1}{M} \operatorname{Var}(g(X))\right)$ (central limit thm)

Simulation \& MCMC: Univariate Sampling

- assumption for all sampling algorithms: we can sample from the uniform $U([0,1])$
- done by pseudo-random number generator (PNRG), in R: ?RNG

Simulation \& MCMC: Univariate Sampling

- assumption for all sampling algorithms: we can sample from the uniform $U([0,1])$
- done by pseudo-random number generator (PNRG), in R: ?RNG

Simulation \& MCMC: Univariate Sampling

- assumption for all sampling algorithms: we can sample from the uniform $U([0,1])$
- done by pseudo-random number generator (PNRG), in R: ?RNG

Simulation \& MCMC: Univariate Sampling

- assumption for all sampling algorithms: we can sample from the uniform $U([0,1])$
- done by pseudo-random number generator (PNRG), in R: ?RNG
- does not work $\mathrm{F}(x)$ well in

Simulation \& MCMC: Univariate Sampling

- assumption for all sampling algorithms: we can sample from the uniform $U([0,1])$
- done by pseudo-random number generator (PNRG), in R: ?RNG
- does not work $\mathrm{F}(x)$ well in

Simulation \& MCMC: Univariate Sampling

- assumption for all sampling algorithms: we can sample from the uniform $U([0,1])$
- done by pseudo-random number generator (PNRG), in R: ?RNG
- does not work $\mathrm{F}(x)$ well in dimensions >1
- needs $F^{-1}(\cdot)$
- needs normalization factor
- rejection sampling

Simulation \& MCMC: Rejection Sampling

Simulation \& MCMC: Rejection Sampling

1. sample $z(\leftrightarrow)$ from $q(z)$

Simulation \& MCMC: Rejection Sampling

1. sample $z(\leftrightarrow)$ from $q(z)$
2. sample $u(\downarrow)$ from $U([0, k q(z)])$

Simulation \& MCMC: Rejection Sampling

1. sample $z(\leftrightarrow)$ from $q(z) \quad$ sample points uniformly from
2. sample $u(\downarrow)$ from $U([0, k q(z)])\}$ union of white and grey areas

Simulation \& MCMC: Rejection Sampling

1. sample $z(\leftrightarrow)$ from $q(z) \quad$ sample points uniformly from
2. sample $u(\downarrow)$ from $U([0, k q(z)])\}$ union of white and grey areas
3. reject all points in the grey area

Simulation \& MCMC: Rejection Sampling

1. sample $z(\leftrightarrow)$ from $q(z) \quad$ sample points uniformly from
2. sample $u(\downarrow)$ from $U([0, k q(z)])\}$ union of white and grey areas
3. reject all points in the grey area
4. forget about $u: z$ distributed $\propto \tilde{p}(z)$!

Markov Chain Monte Carlo: General Idea

- need to sample from high-dimensional distributions

Markov Chain Monte Carlo: General Idea

- need to sample from high-dimensional distributions
- idea: produce samples by a Markov Chain:
random walk over parameter space

Markov Chain Monte Carlo: General Idea

- need to sample from high-dimensional distributions
- idea: produce samples by a Markov Chain: random walk over parameter space
- random walk spends more time in high-probability regions

Markov Chain Monte Carlo: General Idea

- need to sample from high-dimensional distributions
- idea: produce samples by a Markov Chain: random walk over parameter space
- random walk spends more time in high-probability regions
- if in each step we move in one dimension only: need to sample from one-dimensional distribution only, can use previous algorithms for that!

Markov Chain Monte Carlo: General Idea

- need to sample from high-dimensional distributions
- idea: produce samples by a Markov Chain: random walk over parameter space
- random walk spends more time in high-probability regions
- if in each step we move in one dimension only: need to sample from one-dimensional distribution only, can use previous algorithms for that!
- but: samples are not independent!

Markov Chain Monte Carlo: Algorithms

- Metropolis-Hastings:

Markov Chain Monte Carlo: Algorithms

- Metropolis-Hastings:
- propose a step
(draw from easy-to-sample-from proposal distribution)

Markov Chain Monte Carlo: Algorithms

- Metropolis-Hastings:
- propose a step (draw from easy-to-sample-from proposal distribution)
- accept step with certain probability (tailored to make chain approach the target distribution)

Markov Chain Monte Carlo: Algorithms

- Metropolis-Hastings:
- propose a step
(draw from easy-to-sample-from proposal distribution)
- accept step with certain probability
(tailored to make chain approach the target distribution)
- Stan uses an improved variant called Hamiltonian MH

Markov Chain Monte Carlo: Algorithms

- Metropolis-Hastings:
- propose a step (draw from easy-to-sample-from proposal distribution)
- accept step with certain probability (tailored to make chain approach the target distribution)
- Stan uses an improved variant called Hamiltonian MH
- Gibbs sampler:

Markov Chain Monte Carlo: Algorithms

- Metropolis-Hastings:
- propose a step (draw from easy-to-sample-from proposal distribution)
- accept step with certain probability (tailored to make chain approach the target distribution)
- Stan uses an improved variant called Hamiltonian MH
- Gibbs sampler:
- loop over parameter vector $\left(\theta_{1}, \theta_{2}, \ldots\right)$

Markov Chain Monte Carlo: Algorithms

- Metropolis-Hastings:
- propose a step (draw from easy-to-sample-from proposal distribution)
- accept step with certain probability (tailored to make chain approach the target distribution)
- Stan uses an improved variant called Hamiltonian MH
- Gibbs sampler:
- loop over parameter vector $\left(\theta_{1}, \theta_{2}, \ldots\right)$
- draw from the full conditionals $f\left(\theta_{i} \mid\right.$ everything else $) \propto$ joint

Markov Chain Monte Carlo: Algorithms

- Metropolis-Hastings:
- propose a step (draw from easy-to-sample-from proposal distribution)
- accept step with certain probability (tailored to make chain approach the target distribution)
- Stan uses an improved variant called Hamiltonian MH
- Gibbs sampler:
- loop over parameter vector $\left(\theta_{1}, \theta_{2}, \ldots\right)$
- draw from the full conditionals $f\left(\theta_{i} \mid\right.$ everything else) \propto joint
- special case of MH where proposals are always accepted

Markov Chain Monte Carlo: Why does this work?

Algorithms create a

- stationary,
- irreducible and
- aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Markov Chain Monte Carlo: Why does this work?

Algorithms create a

- stationary,
- irreducible and
- aperiodic

Markov chain
which has the joint as its
limiting (invariant) distribution

Markov Chain Monte Carlo: Why does this work?

Algorithms create a

- stationary,

$$
f\left(x_{2} \mid x_{1}\right)=\quad \cdots \quad=f\left(x_{n} \mid x_{n-1}\right)
$$

- irreducible and
- aperiodic

Markov chain which has the joint as its limiting (invariant) distribution

Markov Chain Monte Carlo: Why does this work?

Algorithms create a

- stationary,
- irreducible and
- aperiodic

Markov chain which has the joint as its limiting (invariant) distribution

Markov Chain Monte Carlo: Why does this work?

Algorithms create a

- stationary,
- irreducible and
- aperiodic

Markov chain which has the joint as its limiting (invariant) distribution

Markov Chain Monte Carlo: Why does this work?

Algorithms create a

- stationary,
- irreducible and
- aperiodic

Markov chain which has the joint as its limiting (invariant) distribution

Markov Chain Monte Carlo: Why does this work?

Algorithms create a

- stationary,
- irreducible and
- aperiodic

Markov chain which has the joint as its limiting (invariant) distribution

Markov Chain Monte Carlo: Why does this work?

Algorithms create a

- stationary,
- irreducible and
- aperiodic

Markov chain which has the joint as its limiting (invariant) distribution

Markov Chain Monte Carlo: Why does this work?

Algorithms create a

- stationary,
- irreducible and
- aperiodic

Markov chain which has the joint as its limiting (invariant) distribution

$$
\left(p_{1}(t), p_{2}(t), p_{3}(t), p_{4}(t)\right) \xrightarrow{t \rightarrow \infty}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)
$$

MCMC: Warm-Up (= Burn-In), Mixing, Thinning

MCMC: Warm-Up (= Burn-In), Mixing, Thinning

Bayesian hierarchical modelling, simulation and MCMC

 OutlineBayesian hierarchical modelling / Bayesian networks / graphical models

Exercises |

Simulation \& MCMC

Exercises II

Exercise: Quick start RStan

A Stan model is defined by five program blocks:

```
model1 <- "
data {
}
transformed data {
}
parameters {
}
transformed parameters {
}
model {
}
generated quantities {
}"
```


Exercise: Quick start RStan

A Stan model is defined by five program blocks:

```
model1 <- "
data {
}
transformed data {
}
parameters { 
transformed parameters {
}
model { 
generated quantities {
}"
```


Exercise: Quick start RStan

$f(x \mid \theta) \sim \operatorname{Binomial}(n, \theta)$
$f(\theta \mid a, b) \sim \operatorname{Beta}(a, b)$
$f(\theta \mid a, b) \sim \operatorname{Beta}(a, b)$

```
library (rstan)
model0 <- "
data \{
    int<lower=0> n;
    int<lower=0> \(x\);
\}
parameters \{
    real<lower=0, upper=1> theta;
\}
model \{
    theta \(\sim\) beta \((2,2)\);
    \(\mathrm{x} \sim\) binomial (n, theta);
\}
"
data0 <- list \((\mathrm{n}=10, \mathrm{x}=5)\)
```


Exercise: Quick start RStan


```
```

library(rstan)

```
```

library(rstan)
model0 <- "
model0 <- "
data {
data {
int<lower=0> n;
int<lower=0> n;
int<lower=0> x;
int<lower=0> x;
}
}
parameters {
parameters {
real<lower=0,upper=1> theta;
real<lower=0,upper=1> theta;
}
}
model {
model {
theta ~ beta(2,2);
theta ~ beta(2,2);
x ~ binomial(n, theta);
x ~ binomial(n, theta);
}
}
"
"
data0 <- list(n=10, x=5)

```
```

data0 <- list(n=10, x=5)

```
```

$f(x \mid \theta) \sim \operatorname{Binomial}(n, \theta)$
$f(\theta \mid a, b) \sim \operatorname{Beta}(a, b)$

Running the model creates a stanfit object.
fit0 <- stan (model_code=model0, data=data0, iter=1000, chains=4) print (fito) ; plot(fit0)

Exercise: Quick start RStan

$f(x \mid \theta) \sim \operatorname{Binomial}(n, \theta)$
$f(\theta \mid a, b) \sim \operatorname{Beta}(a, b)$

```
library(rstan)
model0 <- "
data {
    int<lower=0> n;
    int<lower=0> x;
}
parameters {
    real<lower=0,upper=1> theta;
}
model {
    theta ~ beta(2,2);
    x ~ binomial(n, theta);
}
"
data0 <- list(n=10, x=5)
```

Running the model creates a stanfit object.
fit0 <- stan (model_code=model0, data=data0, iter=1000, chains=4) print (fito) ; plot (fit0)

The samples can be extracted by samples0 $=$ extract(fit0, c("theta")) http://mc-stan.org/documentation/

Exercise: Linear regression in RStan

We want to estimate the parameters in the linear regression example, using RStan to sample from the posterior.

The model assumptions are:
$y_{i} \mid \beta_{1}, \beta_{2}, \tau \sim \mathrm{~N}\left(\beta_{1}+x_{i} \beta_{2}, 1 / \tau\right)$
$\tau \mid a, b \sim \operatorname{Gamma}(a, b), \quad a=b=10^{-3}$
$\beta_{1} \mid m_{1}, t_{1} \sim \mathrm{~N}\left(m_{1}, 1 / t_{1}\right), \quad m_{1}=0, t_{1}=10^{4}$
$\beta_{2} \mid m_{2}, t_{2} \sim N\left(m_{2}, 1 / t_{2}\right), \quad m_{2}=0, t_{2}=10^{4}$

Exercise: Linear regression in RStan

- Create an artificial data set $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ by

```
data <- list()
data$N <- 50
data$x <- rnorm(data$N)+30
data$y <- 3 + 5*data$x + rnorm(data$N, sd=1/10)
```

What are thus the 'true' parameter values?

- Define the model in Stan. Include a transformed parameters block where you define $\sigma=\sqrt{1 / \tau}$. (In Stan, the Normal distribution is parametrized with the standard deviation σ !)
- Simulate four chains with 1000 iterations each and use plot() and print() to get a first impression of the results. What point estimates do you get for β_{1}, β_{2} and σ ?

Exercise: Linear regression in RStan

- The functions stan_trace(), stan_dens() and stan_ac() allow you to analyze your sample from the posterior distribution more closely. (You can include the warm-up phase in your plots by setting inc_warmup = TRUE.) How long is the warm-up phase? Do your chains mix well? Is thinning necessary?
- The function pairs() also works on stanfit objects. Plot pairwise scatterplots of your sample using pairs(). What do you observe about the relation between β_{1} and β_{2} ?

Exercise: Linear regression in RStan

- The high correlation between β_{1} and β_{2} indicates that the Markov chain cannot move around freely. You can mitigate this problem by centering the data x_{1}, \ldots, x_{n}. The mean for the Normal distribution of y_{i} is then given by $\beta_{1}^{c}+\beta_{2}\left(x_{i}-\bar{x}\right)$, where $\beta_{1}^{c}=\beta_{1}+\beta_{2} \bar{x}$.
Add the following block to your stan model definition,

```
transformed data {
    vector[N] xcentered;
    xcentered=x-mean(x);
}
```

and edit the parameters and model blocks such that the model generates samples from β_{1}^{c} instead of β_{1}.

- Edit the transformed parameters block to define β_{1} as $\beta_{1}=\beta_{1}^{c}+\beta_{2} \bar{x}$.
- Simulate four chains with 1000 iterations each from this new model, and analyze your sample from the posterior distribution like for the first model. What has changed?

Exercise: Linear regression in RStan

- Choose an informative prior for one or both of β_{1} and β_{2}. Try out different values for mean and standard deviation. What is the effect on the chains and the posterior densities?

