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Assessment factors have been proposed as a means to extrapolate from data on the concentrations

hazardous to a small sample of species to the concentration hazardous to p% of the species in a given

community (HCp). Aldenberg and Jaworska [2000. Uncertainty of the hazardous concentration and

fraction affected for normal species sensitivity distributions. Ecotoxicol. Environ. Saf. 46, 1–18] proposed

estimators that prescribed universal assessment factors which made use of distributional assumptions

associated with species sensitivity distributions. In this paper we maintain those assumptions but

introduce loss functions which punish over- and under-estimation. Furthermore, the final loss function

is parameterised such that conservatism can be asymmetrically and non-linearly controlled which

enables one to better represent the reality of risk assessment scenarios. We describe the loss functions

and derive Bayes rules for each. We demonstrate the method by producing a table of universal factors

that are independent of the substance being assessed and which can be combined with the toxicity data

in order to estimate the HC5. Finally, through an example we illustrate the potential strength of the

newly proposed estimators which rationally accounts for the costs of under- and over-estimation to

choose an estimator; as opposed to arbitrarily choosing a one-sided lower confidence limit.

& 2008 Elsevier Inc. All rights reserved.
1. Introduction

The hazardous concentration to p% (HCp) of a community
assemblage of biological species is equivalent to the probability
that a randomly selected species from this assemblage has its
toxicological endpoint (typically a no observed effect concentra-
tion NOEC) violated at, or below, the HCp. Most work focuses on
the extrapolation related to inter-species variation for a given
substance, and this is where we will focus also. A thorough
discussion of this and related topics can be found in Posthuma
et al. (2002).

It is often the case within the typical modelling assumptions
that the decision rule for setting safety limits (a.k.a. trigger values)
is equivalent to applying an assessment factor (a.k.a. extrapolation
factor, safety factor, uncertainty factor) to some particular
summary of the available toxicity data. In recent years there has
been a lot of literature published on the calculation of assessment
factors and ways of calculating the HCp. This has included (and is
not limited to) methods based on: confidence limits (Wagner and
Løkke, 1991; Aldenberg and Slob, 1993; Aldenberg and Jaworska,
ll rights reserved.

key).
2000); bootstrapping techniques (Newman et al., 2000, 2002);
Bayesian analysis with subjective knowledge (Grist et al., 2006)
and without subjective knowledge (Aldenberg et al., 2002); non-
parametric methods with an application of an asymmetric loss
function (Chen, 2003); and calculating the mathematically
expected fraction of species affected (EFSA, 2005). Furthermore,
many methods have invoked species sensitivity distributions
(SSDs); a model which describes the sensitivity of toxicity for
different species in an ecological community. Estimating the HCp

under this modelling assumption effectively reduces to the
problem of estimating the pth percentile of the SSD, which is
usually assumed to be log-normal or log-logistic, where the
parameters are unknown. However, these methods are often
hampered by the typically small amount of toxicity data available
for risk assessment.

Aldenberg and Jaworska (2000), followed up by Aldenberg et
al. (2002), extensively discuss the confidence limit based method.
The idea focuses on evaluating a sampling distribution of the HCp,
referred to as second order distribution fitting by Burmaster and
Wilson (1996), such that uncertainty can be represented. A
percentile of this second order distribution then corresponds to
one’s estimate at a permitted level of uncertainty. Therefore, this
second order distribution admits a class of estimators. The HC5 is
the common benchmark safety limit reported, however, it is often
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the lower 95% one-sided confidence limit value of the HC5 which
is advocated for use as to err on the side of caution, especially in
light of the typically small sample sizes. The median estimate of
the HCp is typically presented alongside the corresponding two-
sided 90% confidence interval. There is, however, some post hoc
justification for choosing the lower 95% estimator in EFSA (2006)
who compared the estimator to community level effects from
mesocosms. However, to a degree the choice of estimator is still
somewhat arbitrary.

A more foundational approach to the problem is to consider
loss functions; a useful tool in any statistician’s toolbox as they
allow one to incorporate loss on a functional level into the
decision problem one faces. A loss function is in essence a
measure of the cost for an estimator being a certain ‘distance’
away from the true parameter. In other words, one can specify the
cost of over- and under-estimation proportional to the respective
distance. Each method described above has been proposed on a
different premise; no method other than Chen (2003) has
proposed directly using a loss function which potentially adds
great benefit to the estimation process. However, Chen (2003)
proposed a method which required a minimum of 19 toxicity
values (when p ¼ 5) which, unfortunately, is not realistically
obtainable in the current risk assessment procedures, a point
made clear in Luttik and Aldenberg (1997). Loss usually refers to a
cost, although this may not be a financial cost, for example, the
cost of losing a species in an ecological community. Choosing
among the large set of potentially suitable loss functions requires
reasoning, although certain loss functions are chosen as proxies
for ease of calculation. Loss functions allow a risk manager in
conjunction with a risk assessor to choose how ‘costly’ it is for
an estimator to over- and under-estimate the true value. In
ecotoxicological risk assessment one might argue that it is more
‘expensive’ to over-estimate the HCp than under-estimate as
overestimation would potentially put greater than p% of species at
risk. This cost is, however, only partly financial (e.g. clean-up
costs) and partly subjective (e.g. cost of losing more than p% of
species). The financial costs relating to under-estimation would be
in conjunction with the manufacturers R&D costs and refined risk
assessments, whereas the personal subjective costs would be in
relation to the possible restriction of a useful and potentially
important substance. A risk assessor can decide in advance how
they want to envisage cost and to what the cost relates to, for
example, neglecting other dimensions of risk and focusing strictly
on the cost associated with losing species from the community.
The cost in the former example is almost certainly a representa-
tion of preference although it may have financial attachments.

In Section 2 we define notation, definitions and formalise the
problem. In Section 3 we place a new perspective on a well-
reported method for estimation of hazardous concentrations.
Motivated by the latter, in Section 4 we propose a different loss
function for the application of estimating hazardous concentra-
tions and derive its optimal form as well propose a strategy for
refining its elicitation in Section 7. In light of discovering that all
estimators discussed within this paper are of the same form, we
provide a look-up table of assessment shift-factors in Section 5
and compare them in an example in Sections 6 and 7.3. A
discussion is made and conclusions drawn in Sections 8 and 9,
respectively.
2. The problem and notation

We assume we have observed n log10-toxicity data values
which are all of the same endpoint x1; x2; . . . ; xn (e.g. LC50, NOECs)
for a substance under current assessment such that each
xi is independently identically distributed (i.i.d.) normal with
unknown mean m and unknown standard deviation s. Let X be a
vector of the log-toxicity data; x̄ be the mean and s2 be the
unbiased sample variance of the log-toxicity data; and for
convenience, define h ¼ ðm;s2Þ. Let LHCp be the log (base 10) of
the true HCp, and ^LHCp be the log (base 10) of the estimated HCp.
It is simple to see, from Aldenberg and Jaworska (2000) for
example, that if m and s2 were known with certainty, i.e. non-
random, then one has LHCp � cpðhÞ ¼ m� Kps, where Kp is the
ð100� pÞth percentile of the normal distribution, e.g. K5 ¼ 1:6445.

A loss function is defined to be a function that measures the
cost or regret associated with a particular event. Although ‘cost’ is
usually perceived as monetary, this need not be the case, and
instead loss can be thought of as, say, mortality. We define
loss functions here to be of the form Lð ^LHCp; LHCpÞ so that we
consider the cost associated with either over- or under-estimating
the true LHCp.

The method which we apply to determine an optimal decision
is by determining the Bayes rule which is defined to be the
decision rule that minimises the posterior expected loss. In other
words, if we define our decision rule to be dpðXÞ, then our optimal
Bayes rule is defined to be

dpðXÞ
�
¼ argmin

dpðXÞ
EhjXLðdpðXÞ;cpðhÞÞ

where the expectation is taken with respect to the posterior
distribution of h, i.e. P½hjX�, which is denoted as hjX in the above
equation; and the minimisation is carried out with respect to all
possible decision rules dpðXÞ.

There do exist other forms of risk measurement. However, by a
very well-known theorem of Wald (1950), any admissible decision
rule is a Bayes rule with respect to some prior distribution
(possibly an improper prior distribution), whereby admissibility is
defined to mean that no other decision rule dominates it in terms
of risk. It is therefore argued by many, for example, Bernardo and
Smith (2000) that it is pointless to work in decision theory outside
the Bayesian framework.

The problem we explore is how to estimate a suitably
conservative value of the LHCp for a given dataset. In the case of
many reports such as Aldenberg and Jaworska (2000) and EFSA
(2005), this problem has reduced to determining an assessment

shift-factor, denoted k�p here, which acts on the data through the
form x̄� k�ps to yield an estimate of the LHCp for the prescribed
risk measure. This is the typical envisagement of this particular
type of decision rule since on the original scale it amounts to
dividing the geometric mean of the toxicity data by the geometric
standard deviation times some assessment factor. Furthermore,
the form is such that like previous studies, the assessment shift-
factors are universal in the sense that they do not depend on the
data itself. Not surprisingly, in our derivation the optimal decision
rules will also reduce to this form. We do, however, note that not
all Bayes rules will lead to estimators of this form. Prior
distributional choice will clearly affect the form, as well as other,
perhaps less practical, loss functions.

Another related problem is that of estimating the potentially
affected fraction of species at risk for a given environmental
concentration. Aldenberg and Jaworska (2000) discussed this
problem from a sampling distribution perspective. It is justifiable
to utilise loss functions for the related problem, which we expect
to have implications on the current techniques employed,
however, this is not something we explore in this paper.
3. A common decision rule

Aldenberg and Jaworska (2000), who had extended ideas from
the likes of Wagner and Løkke (1991), presented a method for
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calculating assessment factors based on credible limits from a
Bayesian perspective, although their inferences coincided with the
frequentist perspective. The idea centred on calculating the
probability P½x̄� k�pspm� KpsjX� ¼ g which is clearly the same
as P½x̄� k�pspcpðhÞjX� in our general notation. This probability,
under distributional assumptions already discussed and with the
standard Jeffreys prior distribution (Bernardo and Smith, 2000)
was shown to be equivalent to P½Tn�1;Zpk�p

ffiffiffi
n
p
� ¼ g where Tn�1;Z is

a random variable distributed with a non-central t-distribution
with n� 1 degrees of freedom and non-centrality parameter
Z ¼ Kp

ffiffiffi
n
p

. Aldenberg and Jaworska (2000) then retrieved one-
sided lower (95%), median (50%) and upper (5%) under-estimate
confidence/credible limits for k�p by setting g to required levels
(i.e. values in parenthesis). The lower 95% and upper 5% limits
constitute a 90% two-sided confidence interval.

However, Aldenberg and Jaworska (2000) had indirectly
determined the Bayes rules under a class of loss functions known
as generalised absolute loss (GAL) functions, which for the problem
described here, with LHCp � cpðhÞ and ^LHCp � dpðXÞ, can be
defined as

LðcpðhÞ;dpðXÞÞ ¼
C1½cpðhÞ � dpðXÞ� if cpðhÞXdpðXÞ

C2½dpðXÞ �cpðhÞ� if cpðhÞodpðXÞ

(
(1)

It is clear that C140 and C240 represent the coefficients of cost
for under- and over-estimation, respectively, moreover, when C1 ¼

C2 we retrieve the standard absolute loss function (up to a positive
scaling). In essence, the three one-sided (under-estimate) con-
fidence limits they prescribe, what we call: (i) LHClow

p , (ii) LHCmed
p

and (iii) LHCupp
p , correspond to Bayes rules under GAL functions

with: (i) C2 ¼ 19C1, (ii) C1 ¼ C2 and (iii) C1 ¼ 19C2, respectively.
A graphical interpretation of these loss functions can be viewed
in Fig. 1.

The proof of our proposition is quite simple. It is known that
under GAL the optimal Bayes rule is the C1=ðC1 þ C2Þth percentile
of the posterior distribution of cpðhÞ. In the Bayesian paradigm, we
treat the data as fixed and observed, so we can equivalently define
the problem as determining a Bayes rule for kp such that the
C1=ðC1 þ C2Þth percentile is of the form x̄� kps. We can re-write
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Fig. 1. A graphical representation of the generalised absolute loss function for the

specification of C2 ¼ 19C1 (lower; solid) where D � dpðXÞ �cpðhÞ is the difference

between the estimated LHCp and the true LHCp . The union of the dashed line with

the symmetric solid line represents when C1 ¼ C2 (median). Note that without loss

of generality C2 ¼ 19.
this as

P½x̄� kpspcpðhÞ� ¼ 1�
C1

C1 þ C2
(2)

The left-hand side of Eq. (2) reduces to the same probability as
Aldenberg and Jaworska (2000) reported which is
P½Tn�1;Zpkp

ffiffiffi
n
p
�. The right-hand side of Eq. (2) can therefore be

interpreted as playing the same role as g which Aldenberg and
Jaworska (2000) describe as being the value of the latter
probability. Therefore, when g ¼ 0:95, which implies C2 ¼ 19C1,
we retrieve k�p which is the optimal decision rule for kp that
extrapolates to an optimal Bayes rule for LHCp, what we
denoted LHClow

p . Similarly, when g ¼ 0:5 and 0.05 which implies
C1 ¼ C2 and C1 ¼ 19C2, respectively, we retrieve LHCmed

p and
LHCupp

p , respectively, also. It is clear that we simply need only
consider the relative fraction C1=C2, and moreover, we have
demonstrated the role of this proportion for purposes of inference.
Effectively, if one does subscribe to GAL, then one can choose the
value for the confidence limit in the method of Aldenberg and
Jaworska (2000) in a non-arbitrary way by relating it to cost. For
example, the commonly chosen 95% lower one-sided under-
estimate confidence limit would be suitable if one punishes the
cost of overestimation as nineteen times the cost of under-
estimation.

Therefore, from a loss function perspective we have identified a
class of loss functions that many authors have indirectly

subscribed to. It is not very likely that one would ever
elect to choose LHCupp

p from either perspective since clearly it
lacks conservatism. In other words, there is unlikely to be a
situation where C1 ¼ 19C2, i.e. the associated cost of overestima-
tion is nineteen times less relative to under-estimation. LHCmed

p

on the other hand offers a 50:50 chance of under-estimation,
and so is probably not ideal either. This is also clear on the cost
level as only in those few specific situations where C1 ¼ C2 would
the LHCmed

p be of relevance. Chen (2003) and others have noted
that often upper/lower confidence limits are chosen and advo-
cated in ecotoxicological risk assessment (depending on the
nature of the problem), and so it is clear that Aldenberg and
Jaworska’s LHClow

p offers the most conservatism from the three
estimators they presented. Strictly speaking, the corresponding
cost assumptions for using this estimator will probably not be
ideal for all risk assessments where a degree of conservatism is
required, in fact it may be an over-cautious estimator for a large
number of cases. However, one thing that is clear, is that we
require an asymmetric loss function which punishes overestima-
tion more than under-estimation if we are to retrieve a truly
conservative estimator.
4. LINEX

In this section we discuss the concept of estimating an
optimal decision for LHCp from a completely different loss
function. We first start by describing the (modified) LINEX loss
function to be

LðcðhÞ; dpðXÞ;sÞ

¼ b exp adpðXÞ � cðhÞ
s

� �
� a dpðXÞ � cðhÞ

s

� �
� 1

� �
(3)

where one notices that s is used to scale the difference between
the true LHCp and the estimator ^LHCp as done by Zieliński (2005)
for reasons described later on; and b is a positive constant used to
scale the loss function to the correct scale of loss measurement.
The LINear-EXponential (LINEX) loss function was first proposed
by Varian (1975) which conveyed loss as increasing linearly on
one side and exponentially on the other side. That is, not only was
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the loss function asymmetric, it was not simply linearly asym-
metric which as Zellner (1986) notes, was the commonly
researched asymmetric class of loss functions of its time. This
loss function is therefore particularly well suited to the problem of
estimating the LHCp where it is arguable that overestimation is
more serious than under-estimation. GAL functions, like those
discussed in Section 3, might possibly fail to adequately reflect the
need for rising severity of overestimation, whereas LINEX
accounts for this via a linear-exponential duality.

For suitably sized a=s40, Lð�Þ is asymmetric about the origin
with overestimation being punished more than under-estimation; in
fact as j ^LHCp � LHCpj ! 1, Lð�Þ approximately increases exponen-
tially when ^LHCp � LHCp40 and approximately linearly when
^LHCp � LHCpo0. The exponential–linearity phenomenon is reversed

for ao0, however, we do not concern ourselves with this scenario.
The fact that the cost of overestimation increases exponentially is
clearly appealing when considering the scope of the problem here.
Finally, via a Taylor expansion it can be seen that for small
aj ^LHCp � LHCpj=s, Lð�Þ � ba2ð ^LHCp � LHCpÞ

2=2s2. This resembles
another very well-studied loss function, the squared error loss
(SEL) function which is a symmetric loss function similar to standard
absolute loss, except that it punishes at a quadratic rate, as opposed
to a linear rate. SEL would lead to another decision rule of the form
x̄� k�ps, however, we do not derive this estimator here. We would,
however, note that the scaling of the distance metric by s will mean
that the inferences for small a will not necessarily coincide with the
inferences of the SEL.

It is apparent that LINEX offers a free parameter with which
one can non-linearly tweak asymmetric conservatism as one may
wish, thus giving another point in its favour. To understand the
role of a40, we have plotted the standard LINEX loss function
over a few values of interest, see Fig. 2. It is worth recalling that
we can multiply a loss function by an arbitrary positive constant
so that without loss of generality we still determine the same
decision rule. Therefore, when considering Fig. 2 one might scale
the loss functions accordingly.
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Fig. 2. Figure of the standard LINEX loss function LðDÞ ¼ b½eaD � aD� 1� where

D ¼ dpðXÞ �cpðhÞ; D is the standard distance between the estimated LHCp and the

true LHCp . Without loss of generality we have chosen b ¼ 1 for all plotted loss

functions. It is clear that as a as increases then overestimation becomes very

‘expensive’. We have ignored the metric-scaling by s in this case as the figure is for

illustrative purposes only. Solid: a ¼ 1, dashed: a ¼ 0, dotted: a ¼ 1
2, dot-dash:

a ¼ 2.
In Appendix A we prove that the optimal Bayes rule for
estimating the LHCp is of the form x̄� k�ps where k�p is the unique

solution toZ 1
0

tðn�2Þ=2 exp �ak�p
ffiffi
t
p
�

n� 1

2

� �
t

� �
dt

¼ G
n

2

	 
 n� 1

2

� ��n=2

exp �a Kp þ
a

2n

h in o
(4)

It is obvious that we cannot explicitly write down a formula to
calculate k�p in this instance, however, there are two possible ways
to proceed. The first is to identify the connection of the left-hand
side of Eq. (4) to that of a particular solution of the parabolic
cylinder function from which look-up tables and general mathe-
matics software can be used, see for instance Zieliński (2005). The
second way, the direction which we take, is to use numerical
integration and solve for the singular root. As this was particularly
computationally efficient, a strict control on the accuracy was
maintained.
5. Look-up table for p ¼ 5

In Table 1 we present a selection of assessment shift-factors k5

to estimate the LHC5 based on Bayes rules under the LINEX loss
function for a variety of values for a, as well as the lower, median
and upper assessment shift-factors determined by Aldenberg
and Jaworska (2000). A copy of the code for use with R
(R Development Core Team (2006)) can be obtained by contacting
the author.
6. Example

We consider a frequently used data set which was discussed in
Aldenberg and Jaworska (2000) but originated from Van Straalen
and Denneman (1989). The data are that of NOEC toxicity values
for soil organisms tested with Cadmium. The data and summary
statistics are described in Table 2.

Aldenberg and Jaworska (2000) determined a median estimate
of k5 to be k�5 ¼ 1:7318 with a corresponding 90% confidence/
credible interval ð3:3995;0:9204Þ. This results in a median
Table 1

Table of values for k5 based on a variety methods for n ranging between 3 and 20

n k�AJlow
k�AJmed

k�AJupp
k�a¼0:5 k�a¼1 k�a¼3 k�a¼5

3 7.6559 1.9384 0.6391 1.6616 1.9266 4.6118 20.5499

4 5.1439 1.8295 0.7433 1.6682 1.8527 3.2254 7.7438

5 4.2027 1.7793 0.8178 1.6678 1.8089 2.7031 4.8538

6 3.7077 1.7505 0.8748 1.6662 1.7802 2.4368 3.7399

7 3.3995 1.7318 0.9204 1.6643 1.7600 2.2767 3.1794

8 3.1873 1.7187 0.9580 1.6627 1.7450 2.1702 2.8494

9 3.0312 1.7091 0.9899 1.6612 1.7334 2.0944 2.6340

10 2.9110 1.7016 1.0173 1.6599 1.7243 2.0376 2.4832

11 2.8150 1.6958 1.0413 1.6588 1.7168 1.9936 2.3719

12 2.7363 1.6910 1.0625 1.6578 1.7106 1.9585 2.2866

13 2.6705 1.6870 1.0814 1.6570 1.7054 1.9298 2.2191

14 2.6144 1.6837 1.0985 1.6562 1.7010 1.9059 2.1645

15 2.5660 1.6808 1.1140 1.6555 1.6972 1.8857 2.1193

16 2.5237 1.6784 1.1281 1.6549 1.6938 1.8684 2.0814

17 2.4863 1.6762 1.1411 1.6544 1.6909 1.8534 2.0490

18 2.4529 1.6743 1.1531 1.6539 1.6883 1.8403 2.0212

19 2.4230 1.6727 1.1642 1.6535 1.6859 1.8288 1.9969

20 2.3960 1.6712 1.1746 1.6531 1.6838 1.8185 1.9756

k�AJlow
, k�AJmed

and k�AJupp
correspond to the 95% lower, 50% median and 5% upper

confidence limits based on the methods of Aldenberg and Jaworska (2000).

k�a correspond to the optimal Bayes rule under the LINEX loss function which

are unique solutions given by Eq. (4); for a ¼ 0:5;1;3 and 5.
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Table 2

NOEC values for toxicity of Cadmium ðmg Cd=gÞ of seven soil organisms

Species NOEC ðmg Cd=mgÞ Log10 NOEC

1 0.97 �0.01323

2 3.33 0.52244

3 3.63 0.55991

4 13.50 1.13033

5 13.80 1.13988

6 18.70 1.27184

7 154.00 2.18752

x̄ 0.97124

s 0.70276

G.L. Hickey et al. / Ecotoxicology and Environmental Safety 72 (2009) 293–300 297
estimate of the HC5 to be 100:97124�1:7318�0:70276 which equals
0:568mg Cd=mg with a 90% confidence/credible interval
ð0:038;2:112Þ.

Under LINEX loss, k�5 ¼ 1:6643;1:7600;2:2767 and 3.1794 for
a ¼ 0:5;1;3 and 5, respectively. This would give estimates for the
HC5 to be 0:633;0:542;0:235 and 0:0545mg Cd=mg, respectively.
When a ¼ 1 we notice that we retrieve a more conservative
estimate than that of the Aldenberg and Jaworska (2000)
median estimator; and by time we reach a ¼ 5 it becomes clear
that we are encroaching on lower-confidence limit boundaries
as given by Aldenberg and Jaworska (2000). Choosing a sensibly
so that one can err on the side of caution whilst not over
punishing overestimation is a decision for risk assessors to
make, as is choice of p. We do not attempt to justify a particular
value nor give vindication to the possible options presented above
since selection depends on the situation and cost–benefit
portfolio; we simply illustrate the explicit effect of a. However,
we will next aim to describe ways in which one might elicit
suitable value(s) for a.
7. On the choice of a for LINEX

We have prescribed a loss function [LINEX] which fits in neatly
to the ecotoxicological field of risk assessment as it offers a
controllable asymmetrical conservatism parameter. However,
choice of this parameter is clearly a difficult task for the risk
assessor as is their choice of what percentile to choose, p, since
this is unfamiliar territory.

7.1. Development

We start by recalling that the role of b40 in Eq. (3) does not
alter inferences and is only chosen to multiply loss to a more
suitable scale. We will therefore take b ¼ 1 for the remainder of
the discussion.

We must now address the fact that the LINEX loss function was
modified so that the difference in the LHCp and ^LHCp was scaled
by the inter-species variation in sensitivity, i.e. we considered
ð ^LHCp � LHCpÞ=s. The ramifications of this are that a can be
chosen, say, for a particular ecological community, and would not
need to be re-considered on the premise of substance effects
for each substance assessed other than for the differences
in cost/benefits attainable; thus, we have a re-usable loss
function. Zieliński (2005) describes this difference as measure of
discrepancy. This might at first seem a difficult concept to grasp,
but consider the idea of punishing the overestimation of the HCp

by, say 100, when a is fixed. Then, if the standard deviation of the
foundational distribution was, say, double for another substance
with similar cost portfolios, then surely punishment should not be
as harsh because, a priori, variability is higher for the latter
substance. However, scaling the difference by the standard
deviation of the SSD enables the difference to be thought of on
a ‘standardised’ scale. Therefore, in essence, the scaling ensures
that the loss is dependent only on the actual percentage of species
which are more sensitive than ĤCp.

This argument is more pertinent for the consideration of LINEX
loss as opposed to GAL. To demonstrate this we consider the
situation of not scaling. Let LL be a standard LINEX loss function,
i.e. where we do not scale the amount of overestimation
D ¼ ^LHCp � LHCp. Also, let LG be a GAL function. Then, considering
the loss of under-estimation to overestimation, i.e.

LLð�DÞ
LLðDÞ

¼
e�aD þ aD� 1

eaD � aD� 1

LGð�DÞ
LGðDÞ

¼
C1

C2

with D40, we notice that under GAL this proportion is
independent of D whereas, in general, under LINEX that is not
the case. The implication of this is that while the choice of a
should reflect the cost–benefit portfolio of the current assess-
ment, it must also take into account the variability of the SSD
since overestimation is much more serious for certain assess-
ments than it is for others. This clearly is an undesirable property
since it would require the risk assessor to know the SSD in
advance of selecting a. Therefore, if we instead elect to advocate
modified LINEX loss, the risk assessor could choose a by
considering the metric of under- and over-estimation on a scale
which is independent of the unknown SSD.

Now, define the discrepancy factor to be t ¼ ð ^LHCp � LHCpÞ=s.
Then clearly ĤC5 ¼ HC5 � 10ts where, of course, s40. We need to
consider a starting point for elicitation, and we feel that possibly a
good place would be to consider t ¼ 2. This corresponds to the
case where we overestimate by 100 on the ‘standardised’ scale;
equivalent to overestimating by 100s on the standard scale, where
s is the (unknown) standard deviation of the SSD (on the
log-scale). Suppose we now told you that this would cost $100
(the dollar sign simply indicates some unit of cost), where
of course here the ‘cost’ is arbitrarily chosen to be that of
cost–benefit for applying the substance independent of the
underlying variability of the sensitivity distribution. Furthermore,
the cost is not necessarily financial. The question we would then
ask would be: if t ¼ �2, i.e. you underestimate by 100 (on the
standardised scale) what relative cost would you associate with
this situation? In other words, what percentage of $100 would you
feel is an adequate representation of this cost given the cost of the
overestimation case? Notice, we could equally as well approach
this problem from the opposite direction by stating a base line for
the case t ¼ �2 and asking the risk assessor how much ‘worse’
would the t ¼ 2 case be.

Therefore, if the data was representative of a particular
community and underestimating by 100 (again, standardised)
costs $100 m, where m 2 ð0;1Þ represents the proportion of the
original cost for overestimation ($100) associated with the
corresponding under-estimation, then solving the equation

m ¼
e�2a þ 2a� 1

e2a � 2a� 1
(5)

for a will yield an elicitated value for a. Eq. (5) will typically
be solved numerically, possibly with a standard spreadsheet
application.

7.2. The risk assessment procedure

To summarise the recipe for estimating the HCp relative to the
modified LINEX loss function, we concisely detail the steps to our
proposal here.
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Determining a:
(a) Assign a percentage, independent of the SSD, of the cost for

underestimation relative to the cost associated with
overestimating by 100. Recall that this is equivalent to
assigning a cost to underestimating by 2s on the log-scale
(where s is the unknown standard deviation of the SSD on
the log-scale) given that overestimating by 2s costs $100.
Set this fraction as m.

(b) Solve Eq. (5) for a.
t
(2)
0.4
1.0

1.5

Determining ĤCp:
(a) Given sample size n, percentile p and a; using suitable

optimisation software solve Eq. (4) for k�p.
(b) ^LHCp ¼ x̄� k�ps.
(c) ĤCp ¼ 10

^LHCp .
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Fig. 3. A contour plot showing the relation of a (x-axis), t (y-axis) and m

(contours). The graph is representative on the ‘standardised’ scale, hence

independent of substance variation, i.e. t is the discrepancy factor. Contour lines

for specific cases have been overlaid including the cases m ¼ 0:001;0:05 and 0.1 for

the examples discussed in Section 7.3. The m-scale (contour labels) can be viewed

as percentages by multiplying m by 100, e.g. m ¼ 0:05 implies that the cost of

underestimating is only 5% relative to the cost of overestimating by a particular

value t on the ‘standardised’ scale.
7.3. Example revisited

Say a risk assessor considers that m should be set to 0.05 on the
basis that the relative cost of underestimation should be 5% of
the cost corresponding to overestimation in the case where the
discrepancy factor is measured as 	2. This would lead them to
choose a� ¼ 2:13. Alternatively, the scenario might be such that
they believe the cost–benefit portfolio of the ecological commu-
nity for application with this substance warrants m ¼ 0:10. Then
they would choose a� ¼ 1:67. Finally, the scenario faced by the
risk assessor might be such that the ecological community is
extremely valuable but they believe that the advocacy by some of
using a lower-confidence (95%) limit as prescribed by Aldenberg
and Jaworska (2000) is too over-cautious and opaque in meaning.
Moreover, they want to perform a ‘quick’ initial risk assessment
using this method. Therefore, the risk assessor might choose
m ¼ 0:001, i.e. 0.1% relative cost, which translates to a� ¼ 4:49.
Overall, the risk assessor has given one possible description of a
loss function for each of the three scenarios that they feel is
adequate, which in turn gives k� ¼ 2:02;1:91 and 2.89, and finally,
translates to estimates of the HC5 being 0.3562, 0.4256 and
0:0871mg Cd=mg, respectively.

The starting point of t ¼ 2 was a suggested point, although
t ¼ 1 or 3 or any other value may be more suitable for elicitation;
it is quite frankly a decision that should be made by the risk
manager via discussion with the risk assessor. Furthermore, one
must remember that the loss function is constrained by its
parametric form, and therefore eliciting a at t ¼ t1 may not
completely reflect desired loss at t ¼ t2; room for accommodation
must therefore be allowed. By virtue of the linear–exponential
duality, at t ¼ 1 the risk assessor has, for the three different
scenarios, assigned relative (to $100) costs of $8:06; $11:06 and
$1:05, respectively; however, let us not forget that this situation is
tremendously less grave than the case t ¼ 2. The associated
percentages of these costs to that of t ¼ �1 are 24%, 32% and 4%,
respectively. Therefore one may wish to try a range of starting
bases to determine a suitable value (or interval) for a by trading-
off different start points. We have plotted a contour plot in Fig. 3
detailing how relative underestimation to overestimation costs
depend on a and discrepancy factor t.

7.4. Generality

Considering whether the risk assessor would want to adjust his
value for a whilst he adjusted his choice for p is not clear. If the
risk assessor first chose p ¼ 5 and selected a ¼ a1, then later
decided he was now more interested in p ¼ 10; should he change
his value for a to a24a1? By increasing p we increase the potential
affected fraction of species, and so one may argue that choosing
a ¼ a2 is more pertinent as it acknowledges that more species are
at risk. However, going from p ¼ 5 to 10 implies that the risk
assessor is setting the acceptability level irrespective of estima-
tion uncertainty; thus, we can assume this is a starting base. So
without loss of generality, it can be argued a should reflect the
level of conservatism required independent of the choice of p,
although, it is clearly obvious that k�p is a function of p.

If different groups of organisms do not fit together in a single
SSD then it may be more appropriate to consider treating the
groups separately and thus fit separate SSDs (Solomon and Takacs,
2002). In such cases, risk assessor/managers would need to
consider using different values of a for each SSD, to reflect the
potentially differing cost–benefit portfolios per group of organ-
isms (e.g. differing ecological role or importance). Should data
from multiple groups of organisms be deemed concurrent with a
single underlying SSD, then either a single or multiple values of a
could be used, depending on whether the cost–benefit portfolios
differed between groups.
8. Discussion

Loss functions have long been a practical tool in statistical
decision theory, yet they have not truly been exploited in the vast
field of ecotoxicology. We have presented two reasonably
interpretable loss functions and shown ways in which an
estimator for the true HCp can be derived such that a degree of
conservatism can be selected. Moreover, we have demonstrated
that estimators proposed by Aldenberg and Jaworska (2000),
which extended research from Wagner and Løkke (1991), are in
fact optimal estimators based on three different loss functions all
belonging to the same class. It is clearly debatable as to whether
these loss functions are the best choice for the application.

In the final example the degree of conservatism was asymme-
trically controllable as well as featuring exponential–linear
duality, a very appealing feature from the risk assessor’s
perspective. The inclusion of suitable loss functions such as LINEX
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allows one to estimate on the side of caution without feeling
necessitated to be over cautious and apply lower/upper confidence
limits. Moreover, we have demonstrated an entirely sound and
appropriate way of visualising the assessment factors applied within
the field of environmental protection. Although this method only
incorporated the risk associated with respect to inter-species
variation, it clearly offers a useful introduction into the application
of loss functions. We have therefore demonstrated that there exists a
potentially more fundamental perspective on the development of
assessment factors associated with inter-species variation, especially
for lower-tier risk assessments when the other dimensions of risk
and uncertainty can be effectively represented in other ways. For
example, some first tier risk assessments combine this with
exposure by dividing an estimate of the 90th percentile of the
exposure distribution by the estimated HCp.

Like Wagner and Løkke (1991) and Aldenberg and Jaworska
(2000) we assume the toxicity data to be log-normal. Suitability of
this distribution choice is discussed in these papers as well as
many others; however, we will not focus on this here. We do
however believe that should the data be suitable (i.e. suitable
endpoint, well-defined ecological community, etc.) for making the
parametric assumptions then the application of loss functions
such as LINEX enables estimation in the face of uncertainty to be
more reflective of prior concerns.

We have demonstrated the potential of loss functions by applying
them to the estimation of the HCp, and is therefore directly relevant
to first-tier risk assessments and environmental quality standard-
setting contexts, where the HCp is used as a proxy for ecological
protection. In higher tier risk assessments other measures of risk
may be used, e.g. estimates of the proportion of species affected
based on combining an SSD and exposure distribution (Aldenberg
et al., 2002), or estimates of the frequency of community impacts
obtained by comparing effect levels from mesocosm experiments
with exposure distributions (Solomon and Takacs, 2002). Loss
functions could also be applied to these estimates of risk, to allow
risk assessors and managers to take appropriate account of the
relative costs of over- or under-estimating risk.

This paper has also demonstrated that use of a lower
confidence limit, as estimated for the HCp by the method of
Aldenberg and Jaworska (2000), is equivalent to a particular Bayes
rule under a GAL loss function, qua the standard applied prior
distribution. This insight opens up an objective approach for
the choice of which confidence limit to use, showing that it
should reflect the relative costs of over- and under-estimating risk
rather than simply adopting the conventional 95% limit. Equally
importantly, this paper has shown that other forms of loss
function could be considered and introduced LINEX as one
alternative. The LINEX loss function is unfamiliar and more
complex to implement than GAL but this will be justified if it
reflects better the relative costs of over- and under-estimating
risk. Both are asymmetric and therefore able to reflect differential
costs for over- and under-estimation, but in different ways, as can
be seen by comparing Figs. 1 and 2. GAL is more appropriate if
costs increase linearly with the degree of over- or under-
estimation but LINEX is more appropriate if costs increase
exponentially for overestimation.

Maltby et al. (2005) and Van den Brink et al. (2006) have used
a different approach to guide the choice of confidence limit for the
HCp, by comparing it with data on effects on aquatic communities
in mesocosm studies. It would be possible to repeat these
comparisons for LINEX estimates of the HCp, taking different
values of a. However, from a decision-theoretic perspective it
would be more appropriate to apply loss functions to estimating
the community effect itself, since this is a more direct representa-
tion of the risk management objective. This could be done by
modelling the relationship between standard toxicity tests and
effects in mesocosms, similar to the regression analysis shown in
Fig. 9 of EFSA (2006), but applying a suitable loss function to take
account of the relative costs of under- and over-estimating effects
at the community level. This would be a logical extension of the
loss function approaches proposed in this paper.
9. Conclusions

The interpretation of risk for purposes of probabilistic risk
assessment have been made clear from a loss function perspec-
tive. The assessment factors proposed by Aldenberg and Jaworska
(2000) have been shown to be optimal Bayes rules under GAL
functions. Moreover, the level of certainty for these estimators has
been identified as being related to the relative slope of the loss
function for over- and under-estimation. A modified LINEX loss
function was proposed and discussed which punishes over- and
under-estimation in a non-linear approach. We therefore propose
that more research is performed in identifying suitable loss
functions for the purpose of estimating the HCp and other areas of
environmental probabilistic risk assessment, especially measures
of impact rather than toxicity alone.
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Appendix A. Derivation of the Bayes rule under LINEX loss

With the standard Jeffreys prior pðm;s2Þ / s�2 for s240;m 2 R,
we can determine the posterior distribution of m and s2 to be
pðm;s2jXÞ ¼ pðmjs2;XÞpðs2jXÞ such that

mjs2;X
Nðx̄;s2=nÞ

s2jX
IGððn� 1Þ=2; ðn� 1Þs2=2Þ

Whilst we have chosen to parameterise the posterior distribution of
s2 as an Inverse-Gamma distribution, Aldenberg and Jaworska (2000)
used an equivalent form, the Inverse-Chi distribution for pðsjXÞ.
We also note that the second parameter of the Inverse-Gamma
distribution is a scale parameter and not a rate parameter. We next
look for a Bayes rule d�pðXÞ which we denote d� such that the Bayes
posterior expected loss is minimised with respect to this rule. The
posterior expected loss, with d shorthand for dpðXÞ, is defined to be

EhjXb exp a
ðd� mþ KpsÞ

s

� �
� a
ðd� mþ KpsÞ

s � 1

� �

The first of two important calculations required is

EhjX m
s

h i
¼ Es

2 jX
fEmjs

2 ;X
½ms�1js2�g

¼ x̄
G

n

2

	 

G

n� 1

2

� � n� 1

2
s2

� ��1=2
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from which we deduce that

EhjX ðd� mþ KpsÞ
s

� �

¼

G
n

2

	 

G

n� 1

2

� � n� 1

2
s2

� ��1=2

½d� x̄� þ Kp

The second important calculation is

EhjX exp a ðd� mþ KpsÞ
s

� �� �

¼ exp aKp þ
a2

2n

� � n� 1

2

� �ðn�1Þ=2

G
n� 1

2

� �

�

Z 1
0

tðn�3Þ=2 exp �
n� 1

2

� �
t þ as�1t1=2ðd� x̄Þ

� �
dt

This combined with the first result implies that the posterior
expected loss can be re-written as

b exp aKp þ
a2

2n

� � n� 1

2

� �ðn�1Þ=2

G
n� 1

2

� �

�

Z 1
0

tðn�3Þ=2 exp �
n� 1

2

� �
t þ a

ffiffi
t
p ðd� x̄Þ

s

� �
dt

� ba
G

n

2

	 

G

n� 1

2

� � n� 1

2
s2

� ��1=2

ðd� x̄Þ þ Kp

2
664

3
775� b

A Bayes rule d� is determined by minimising the above with respect
to d and solving for its root. This is equivalent to solvingZ 1

0
tðn�2Þ=2 exp a

ffiffi
t
p ðd� x̄Þ

s
�

n� 1

2

� �
t

� �
dt

¼ G
n

2

	 
 n� 1

2

� ��n=2

exp �a Kp þ
a

2n

h in o
(A.1)

for d.
However, notice that d only appears in the form ðd� x̄Þ=s

within the left-hand side of Eq. (A.1), which implies that the right-
hand side is independent of the toxicity data and dependent on n

and p only. Moreover, this implies that in general, ðd� x̄Þ=s is a
constant. Let us call such a value �k�p from which we deduce k�p is
our assessment shift factor since d� ¼ x̄� k�ps and d� is a Bayes
rule/action for estimating the LHCp. We omit proof of uniqueness
but note that it is reasonably easy to show.
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