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The NAFEMS Challenge Problem

A Challenge Problem on Uncertainty Quantification & Value
of Information
A mathematical model of a typical electronic device as represented
by a R-L-C network will be provided along with different levels of
uncertainty estimates around the input parameters.

The objective is to assess the reliability of the device based on a set
of criteria and also to quantify the value of information.
The output response is sensitive to the model parameters that have
different cases of value of information.
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Problem statement

Typical electronic device
represented by R-L-C network in
series.

I Input signal Step voltage source for a short duration
I Output response Voltage at the capacitor (Vc)

Uncertainty estimates regarding the R, L, C values are available.
The challenge is to evaluate the reliability of the device using two
criteria:

I Voltage at a particular time should be greater than a threshold
I Voltage rise time to be within a specified duration
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The NAFEMS Challenge Problem
In a nutshell

Challenges:
I Deal with imprecision in the parameters data
I Assess quality of different information sources with respect to

the reliability requirements
Resources:

I Analytical solution for the system output is provided
I Different information sources are available for the system

parameters
References:

I https://www.nafems.org/downloads/uq_value_of_information_
challenge_problem_revised.pdf/

I https://www.nafems.org/downloads/stochastics_challenge_
problem_nwc13.pptx/
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The Electrical Model

Typical electronic device
represented by R-L-C network in
series.

I Input signal Step voltage source for a short duration
I Output response Voltage at the capacitor (Vc)

Uncertainty estimates regarding the R, L, C values are available.
The challenge is to evaluate the reliability of the device using two
criteria:

I Voltage at a particular time should be greater than a threshold
I Voltage rise time to be within a specified duration
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The R-L-C Model

The transfer function of the
system is:

Vc(t)

V
=

ω2

S2 + R
L S + ω2

(40)

Roots are computed as:

S1,2 = −α±
√
α2 − ω2 (41)

The system damping factor Z , parameter α and ω are determined
as follow:

Z =
α

ω
; α =

R
2L

; ω =
1√
LC

; (42)
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The R-L-C Model
System response
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Typical results: Under-damped,
Critically-damped and
Over-damped cases

Under-damped (Z < 1)

Vc(t) = V + (A1cos(ωt) + A2sin(ωt)) exp−αt (43)

Critically-damped (Z = 1)

Vc(t) = V + (A1 + A2t) exp−αt (44)

Over-damped (Z > 1)

Vc(t) = V + (A1 expS1t +A2 expS2t) (45)
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The R-L-C Model
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Typical results: Under-damped,
Critically-damped and
Over-damped cases

For initial conditions dVc
dt |t=0 = 0 and Vc(0) = 0:

Vc(t) = V + (−cos(ωt)− Z · sin(ωt))e−αt if Z < 1 (46)

Vc(t) = V + (−1− αt) e−αt if Z = 1 (47)

Vc(t) = V +

(
S2

S1 − S2
eS1t +

S1
S2 − S1

eS2t
)

if Z > 1 (48)
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Reliability Requirements
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Output of interest: The voltage at the capacitor
Reliability requirements on capacitance voltage (Vc), rise time (tr )
and damping factor (Z ):

1. Vc(t = 10ms) > 0.9 V
2. tr = t(Vc = 0.9V ) ≤ 8 ms
3. System should not oscillate (Z > 1 )
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Parameter Information
There are 4 cases, each affected by uncertainty/imprecision:

CASE-A R [Ω] L [mH] C [µF]
Interval [40,1000] [1,10] [1,10]

CASE-B R [Ω] L [mH] C [µF]
source 1 [40,1000] [1,10] [1,10]
source 2 [600,1200] [10,100] [1,10]
source 3 [10,1500] [4,8] [0.5,4]
CASE-C R [Ω] L [mH] C [µF]
Sampled Data 861, 87, 430,

798, 219, 152,
64, 361, 224,
61

4.1, 8.8, 4.0,
7.6, 0.7, 3.9,
7.1, 5.9, 8.2,
5.1

9.0, 5.2, 3.8,
4.9, 2.9, 8.3,
7.7, 5.8, 10, 0.7

CASE-D R [Ω] L [mH] C [µF]
Interval [40,RU1] [1,LU1] [CL1,10]
Other info RU1 >650 LU1 >6 CL1 <7
Nominal Val. 650 6 7
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Possible solutions
Probabilistic approach

Parameter Characterisation
I Assign probability distribution to parameter values (e.g.

uniform PDFs to intervals);
I Fit probability distribution using samples information (e.g.

Kernels or Multivariate Gaussian);

Uncertainty Quantification
I Propagate uncertainty using single loop Monte Carlo (MC);
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Possible solutions
Imprecise probability approaches

Parameter Characterisation
I Dempster-Shafer structures (D-S)
I Probability-boxes (
I Fuzzy Variables

Uncertainty Quantification
I Double Loop Monte Carlo
I D-S combination and propagation (i.e. Cartesian product of all

focal elements + output mapping, min-max search);
I P-boxes propagation by α-cuts (i.e. focal element sampling +

output mapping, min-max search);
I Robust Bayesian;
I Interval Analysis (e.g. min-max search)
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Examples Imprecise probabilistic approach

Focal Elements Propagation, Remark:
In the procedure, m-dimensional interval input boxes are obtained
(where m is number of focal elements sampled within each run).
The output is then mapped by min-max searched within the
m-dimensional box. This can be done in many ways, for instance:
1. Approximate by sampling (e.g. MC, LHC);
2. Optimization techniques (e.g. Genetic algorithm, quad. prog.);
3. Vertex method and Interval Arithmetic methods;
4. For monotonic systems responses w.r.t input parameters, the

min-max are on the input domain boundaries;
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General Remarks

Tasks
I Evaluate the reliability of the R-L-C device using the given

criteria
I Quantify the value of information in each case

I You can use a technique/strategy of your choice
I Each approach comes with it own limitations that need to be

evaluated.

A reference solution is provided and accessible via a stand-alone
app (shown in the next slide). It provides a possible solution and
not the “true” answers to the problem (that are unknown).
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Reference solution app

I Simple Stand alone application for the solution of the
NAFEMS UQ Challenge problem

I Implement probabilistic approach (Monte Carlo) and D-S
propagation
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CASE-A
Intervals

Information: 3 intervals one for each system parameter.
CASE-A R [Ω] L [mH] C [µF]
Interval [40,1000] [1,10] [1,10]

Provides reference solution obtained as follows:
Probabilistic approach:

I Maximum entropy principle, 3 uniform PDFs:
R ∼ U(40, 1000), L ∼ U(1, 10), C ∼ U(1, 10);

I Propagate uncertainty via Monte Carlo simulation
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Failure quantification

Bi-dimensional case

∫

F
fX(x) dx =

∫
IF (x) fX(x) dx

where:

IF (X) =

{
0 ⇐⇒ X ∈ S
1 ⇐⇒ X ∈ F
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Failure quantification
Monte Carlo simulation

Evaluation (“dart” game):
I f (x)dx probability to hit a point
I IF (x) the prize

I Estimate: direct Monte Carlo simulation

Pf =

∫
IF (x) fX(x) dx ≈ 1

N

N∑

k=1

IF (X(k))

I to meet specified accuracy: N ∝ 1
Pf

Estimate probability of failures : P̂Vc10, P̂tr , P̂Z
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CASE-A
Intervals analysis

Information: 3 intervals one for each system parameter.
CASE-A R [Ω] L [mH] C [µF]
Interval [40,1000] [1,10] [1,10]

I Explore range of variation for Vc(10ms), tr and Z (min-max
within input cuboid);
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CASE-A
Expected Results
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CASE-B
Multiple intervals

Information available:
I 9 intervals, 3 sources for each system parameter.
I Source 1 correspond to CASE-A.
CASE-B R [Ω] L [mH] C [µF]
source 1 [40,1000] [1,10] [1,10]
source 2 [600,1200] [10,100] [1,10]
source 3 [10,1500] [4,8] [0.5,4]

Example of probabilistic approach

I By the maximum entropy principle assume 9 uniform PDFs
(R1 ∼ Ur1, R2 ∼ Ur2, etc.);

I Propagate uncertainty with Monte Carlo and perform
reliability analysis

I Failure probabilities computed for each source of information
(P̂Vc10,1, P̂tr ,1 P̂Z ,1, etc.);
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CASE-B
Double Monte Carlo
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Figure 9: Comparision between single loop and double loop Monte Carlo
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CASE-B
Multiple intervals

Information available:
I 9 intervals, 3 sources for each system parameter.
I Source 1 correspond to CASE-A.
CASE-B R [Ω] L [mH] C [µF]
source 1 [40,1000] [1,10] [1,10]
source 2 [600,1200] [10,100] [1,10]
source 3 [10,1500] [4,8] [0.5,4]

Dempster-Shafer structures

I Assign probability masses to the 3 sources (e.g. m1,2,3 = 1
3)

I Combine focal elements (33) and compute min-max Vc(10ms),
tr and Z and probability mass for each combination;

I P̂Vc10, P̂tr , P̂Z are intervals;
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CASE-B
D-S structure
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CASE-B
D-S structure
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Transform DS to Pbox
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Figure 10: Transform a DS structure in a Pbox and vice-versa.
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CASE-B
Expected Results
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CASE-C
Sampled Points

Information available:
I 10 sampled values for each system parameter

Information:
CASE-C R [Ω] L [mH] C [µF]
Sampled Data 861, 87, 430,

798, 219, 152,
64, 361, 224,
61

4.1, 8.8, 4.0,
7.6, 0.7, 3.9,
7.1, 5.9, 8.2,
5.1

9.0, 5.2, 3.8,
4.9, 2.9, 8.3,
7.7, 5.8, 10,
0.7

Probabilistic approach

I PDF fitting for R,L and C (e.g. Kernel Density Estimation);
I Propagate uncertainty with MC and compute P̂Vc10, P̂tr P̂Z ;
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CASE-C
Kernel Density Estimation

Hypothesis: 10 samples x1, x2, . . . , x10 IID drawn from some
distribution with an unknown density f .

f̂h(x) =
1
n

n∑

i=1

Kh(x − xi ) =
1
nh

n∑

i=1

K
(x − xi

h

)
, (49)

where K (·) is the kernel, h > 0 is a smoothing parameter called the
bandwidth.

For Gaussian basis functions used to
approximate univariate data, Silverman’s rule
of thumb:

h =

(
4σ̂5

3n

) 1
5

≈ 1.06σ̂n−1/5, (50)

σ̂: standard deviation of the samples
Silverman, B.W. (1998). Density Estimation for Statistics and Data Analysis. London: Chapman &

Hall/CRC. p. 48. ISBN 0-412-24620-1.
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CASE-C
Available information

Information available:
I 10 sampled values for each system parameter

Information:
CASE-C R [Ω] L [mH] C [µF]
Sampled Data 861, 87, 430,

798, 219, 152,
64, 361, 224,
61

4.1, 8.8, 4.0,
7.6, 0.7, 3.9,
7.1, 5.9, 8.2,
5.1

9.0, 5.2, 3.8,
4.9, 2.9, 8.3,
7.7, 5.8, 10,
0.7

Imprecise probability

I Kolmogorov-Smirnov test (i.e. confidence bounds on the CDF
and characterization using P-box);

I P-box propagation and compute P̂Vc10, P̂tr , P̂Z , which again
are intervals;
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CASE-C
Probability Boxes
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CASE-C
Probability Boxes

Focal ElementSample from U(0,1)
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CASE-C
Bayesian Updating

P (θ|D, I ) =
P (D|θ, I )P (θ|I )

P (D|I ) (51)

Bayesian Approach:
I Assume prior distribution (e.g. P (θ|I ) as resulting from

CASE-A)
I Collect data and compute likelihood

P(D|θ, I ) =
Ne∏

k=1

P (xek ;θ) =
Ne∑

k=1

log(P (xek ;θ))

Compute Posterior P (θ|D, I ) ∝ P (D|θ, I )P (θ|I ) for
instance

P (xek ;θ) ∝ exp

(
N

∑N
j=1
[
f (θ, ωj)− f ek (ωj)

]2

)
Posterior

Likelihood

Prior

f(x)

x

I 329



CASE-C
Expected Results
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CASE-D
Incomplete data

Information available:
I Nominal value and unbounded intervals
CASE-D R [Ω] L [mH] C [µF]
Interval [40,RU1] [1,LU1] [CL1,10]
Other info RU1 >650 LU1 >6 CL1 <7
Nominal Val. 650 6 7

Minimum bounds can be fixed using physical considerations
(non-negativity), what about the upper bounds? What is the
meaning of Nominal Value here? How can we use it?

Probabilistic approach

I PDF fitting for R,L and C (Truncated Gaussian distribution?
Uniform distribution? e.g. R ∼ U(40,Rn ∗ k) where k is a user
defined parameter

I Monte Carlo uncertainty propagation
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Information available:
I Nominal value and unbounded intervals
CASE-D R [Ω] L [mH] C [µF]
Interval [40,RU1] [1,LU1] [CL1,10]
Other info RU1 >650 LU1 >6 CL1 <7
Nominal Val. 650 6 7

Minimum bounds can be fixed using physical considerations
(non-negativity), what about the upper bounds? What is the
meaning of Nominal Value here? How can we use it?

Probabilistic approach

I PDF fitting for R,L and C (Truncated Gaussian distribution?
Uniform distribution? e.g. R ∼ U(40,Rn ∗ k) where k is a user
defined parameter

I Monte Carlo uncertainty propagation
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CASE-D
Incomplete data

Information available:
I Nominal value and unbounded intervals
CASE-D R [Ω] L [mH] C [µF]
Interval [40,RU1] [1,LU1] [CL1,10]
Other info RU1 >650 LU1 >6 CL1 <7
Nominal Val. 650 6 7

Imprecise probability

I D-S propagation? e.g. propagate 3-dimensional focal elements
{[40,∞] [0.006,∞] [−∞, 0.0000001]};
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CASE-D
Incomplete data

Im
p
re
ci
se
lly

D
ef
in
ed
In
te
rv
al
s

R

L

C

Explore how the impreciselly defined bound
influence the results

Nominal Value

Assume a truncation bound and analyse a
number of possible intervals 5e.g. 4 in figure*

Truncation BoundNominal Value

40 650

40 650 650*Tr

650*Tr40

40 650
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CASE-D
Expected Results
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CASE-E
Combine all available information

I Consider all the sources of information
(CASE-A,CASE-B,CASE-C,CASE-D)

I Sampled values, nominal value and bounded and unbounded
intervals

Tasks
I Can we combine these sources of information?
I What is the effect of the reliability analysis?
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NAFEMS UQ CHALLENGE PROBLEM
Combine all available information

Quality of the information in each case?

I Check the output intervals

Propagation of uncertainty
Some final considerations:

I Information of case A and D seems to have the lowest quality
(Pf interval about [0 1])

I CASE-C has the higher quality (narrower bounds on the
output)

I Monte Carlo Pf lay within the bounds obtained by DS and
P-box approaches
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