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Metamodels
I If the full model is too computationally expensive to do many

simulations, or we have simulation results (or real data!)
already available we can replace the full model with an
approximation:

I Response Surfaces, Polyharmonic Spline, Neural Networks...
I Interval Predictor Models and Random Predictor Models.
I A good approximation should fit existing data well and

generalise well to new data

METAMODEL 

E.g. Response Surface, Polyhar-

monic Spline, Neural Network 

(< 1 second) 

Design Variables Response Variables 

FULL MODEL 

E.g. Finite Element Model 

(hours or days?) 
Design Variables Response Variables 

TRAINING 
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Interval/Random Predictor Model

I IPMs and RPMs are new types of metamodel with favourable
properties for dealing with scarce/limited data.

I The variance in the data can be robustly estimated without
making unjustified assumptions (distribution of noise, for
example).

I The reliability of the metamodel can be bounded (more on this
later).
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Interval Predictor Models - Mathematics
I An IPM is defined as a function returning an interval for each

vector x ∈ X
I i.e.

Iy (x ,P) = {y = M(x , p), p ∈ P} (52)

I Crespo (2016) considers for example:

Iy (x ,P) =
{
y = pTφ(x), p ∈ P

}
(53)

I p is a member of the hyper-rectangular uncertainty set:

P =
{
p : p ≤ p ≤ p̄

}
(54)

I IPM
Iy (x ,P) = [y(x , p̄, p), ȳ(x , p̄, p)] (55)
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How to train a type 1 IPM
I

y(x , p̄, p) = p̄T
(
φ(x)− |φ(x)|

2

)
+ pT

(
φ(x) + |φ(x)|

2

)

(56)
I

ȳ(x , p̄, p) = p̄T
(
φ(x) + |φ(x)|

2

)
+ pT

(
φ(x)− |φ(x)|

2

)

(57)
I Can use polynomial or radial basis
I To find a good model attempt to minimise (expected value of):

δy (x , p̄, p) = (p̄ − p)T |φ(x)| (58)

with the constraints that all data points to be fitted lie within
these bounds and that the upper bound is greater than the
lower bound

I i.e. we solve a linear optimisation program
I These constraints give a type 1 IPM
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Outliers

I Two criterion are used to find outliers:
I We can find a CDF for the distance of each p from the centre

of the uncertainty set and then identify a fraction λp of points
which prevent the interval being further minimised

I We can find the fraction λe of points with the furthest squared
distances from the LS fit

I Points satisfying both criterion can be disregarded as outliers -
then we can retrain with the new subset of points

I The analyst must make a sensible choice of λp and λe
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Reliability
I For reliability parameter ε and confidence parameter β

satisfying
(
k + d − 1

k

) k+d−1∑

i=0

(
N
i

)
εi (1− ε)N−i ≤ β, (59)

I the confidence and reliability parameters of the IPM are
bounded by

ProbPn [R ≥ 1− ε] ≥ 1− β. (60)
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Random Predictor Models
I A function returning a random variable for each vector x ∈ X

Crespo (2015) considers for example:

Ry (x ,P) =
{
y = pTφ(x), p : Fp(p), p ∈ P

}
(61)

I it can be shown that:

p ≤ µ ≤ p̄ 0 ≤ ν ≤ (µ−p)�(p̄−µ) −1 ≤ c ≤ 1 (62)

C (ν, c) � 0 (63)

I σ surface connects all outputs τ standard deviations from µ

Iσ(x , µ,−τ, ν) = [l(x , µ,−τ, ν, c), l(x , µ, τ, ν, c)] (64)

I

νy (x , ν, c) = φ(x)C (ν, c)φ(x) (65)

µy (x , µ) = µTφ(x) (66)
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Type 1 RPM - Optimisation program
I

l(x , µ, τ, ν, c) = µTφ(x) + τ
√
νy (x , ν, c) (67)

I µ is found by any means - least squares is commonly used.
Îν = argmin

ν≥0

{
E[νy (x , µ)] :

l(xi , µ,−σmax , ν, c) ≤ yi ≤ l(xi , µ, σmax , ν, c) for i = 1, ...,N
}

(68)

I σmax is chosen by analyst to decide number of standard
deviations from mean containing all data points.

I Reliability assessment from IPM applies to
Iσ = [l(xi , µ,−σmax , ν, c), l(xi , µ, σmax , ν, c)] also.

I Similar outlier removal algorithm possible (distance from
mean, normalised by variance).

I We can also use Type 2 RPMs (chance constrained
formulation where constraint violation is allowed).
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Implementation

I Implemented a class to construct IPMs/RPMs in generalized
uncertainty quantification software OpenCOSSAN

I Training, Reliability evaluation, Outlier removal are all
performed automatically in OOP framework, with choice of
optimisers/basis type/additional constraints and more
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What is History Matching?

I A type of model calibration
I If we have some real data and a model with some free

parameters which we wish to tune to reproduce the data
I Many methods
I Bayesian Inversion is popular
I See Tarantola, Inverse Problem Theory or Carter, J. N. "Using

Bayesian statistics to capture the effects of modelling errors in
inverse problems."

I Usually use least squares objective function between data and
model output - and a clever optimisation algorithm!
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Simple Example
I As in Carter (2004), the following function will be taken as a

black box
f (z) = (z2 + 0.1z)2 + η1, (69)

I Data provided is for z = 2 to z = 7 - challenge is to predict
z = 10

I The ’model’ we have to match is g(q, z) = zq
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I As you can see I fitted an IPM to the data. New objective
function for simulations:

∆(q) =

C(q)∑

i=0

(
D
i

)
R∗i (1− R∗)D−i , (70)

I Then find feasible q:

0 2 4 6
0

0.2

0.4

0.6

0.8

1

q

∆
(q

)

361



I Which enables us to make predictions...
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Imperial College Fault Model
I Model of a reservoir which has been producing oil for 36

months and has now started producing water (‘true’ data was
produced using a hetrogenous model with added noise (3%)).

I The challenge is to predict future production using a finite
element model (homogenous)

I Good and low quality sand permeabilities and fault throw are
unknown - to be determined by matching history data with the
true data.

I Database with ∼ 160000 simulation results available online
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Simulations
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IC Fault
I Look for solutions with ∆(m) > 0.01
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Results

I Simulations close to minima of the objective function:
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An example for you to try
I Please refer to your handouts
I Your friend at the University requires help with some data

analysis.
I Use the programming language you prefer. I have provided

instructions on a numerical method. I have prepared a solution
in Matlab, and hence have provided some Matlab hints.

I Please give an interval for the value of y at x = 1 with a
probability bound.
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Questions?

I Thank you.
I Jonathan Sadeghi
I J.C.Sadeghi@liverpool.ac.uk
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