Friday 9:00-10:30

Part 12 Hands-on examples of imprecise simulation in engineering (continued)

by Edoardo Patelli and Jonathan Sadeghi

Theory

Metamodels Interval Predictor Models Random Predictor Models

Applications

History Matching Simple Function IC Fault Model

Outline

Theory

Metamodels

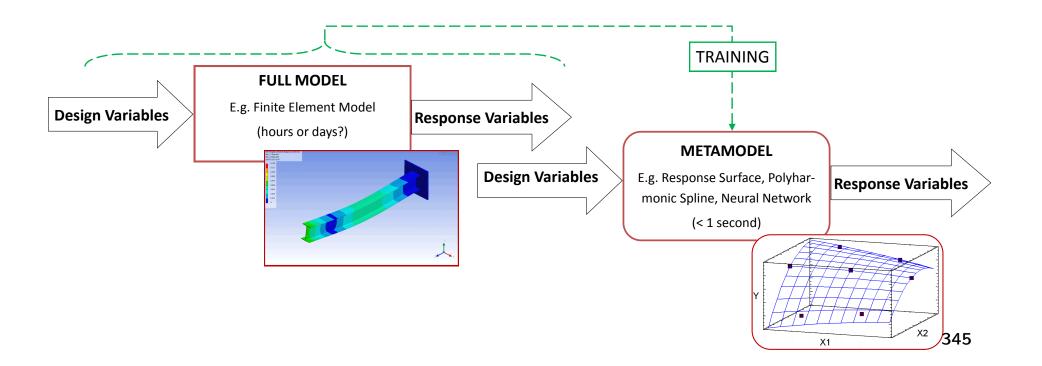
Interval Predictor Models Random Predictor Models

Applications

History Matching Simple Function IC Fault Model

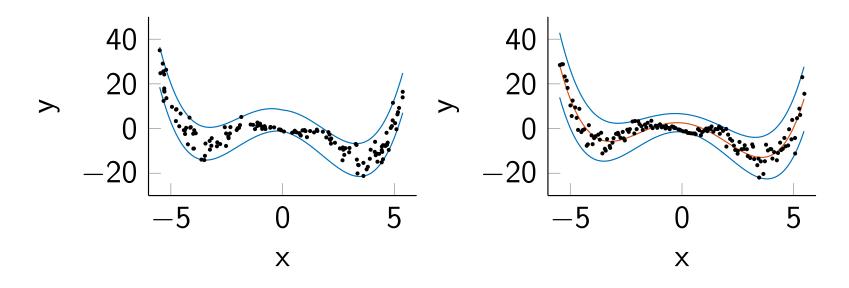
Metamodels

- If the full model is too computationally expensive to do many simulations, or we have simulation results (or real data!) already available we can replace the full model with an approximation:
- Response Surfaces, Polyharmonic Spline, Neural Networks...
- Interval Predictor Models and Random Predictor Models.
- A good approximation should fit existing data well and generalise well to new data



Interval/Random Predictor Model

- IPMs and RPMs are new types of metamodel with favourable properties for dealing with scarce/limited data.
- The variance in the data can be robustly estimated without making unjustified assumptions (distribution of noise, for example).
- The reliability of the metamodel can be bounded (more on this later).



Theory Metamodels

Interval Predictor Models Random Predictor Models

Applications

History Matching Simple Function IC Fault Model

Interval Predictor Models - Mathematics

► An IPM is defined as a function returning an interval for each vector x ∈ X

► i.e.

$$I_y(x, P) = \{y = M(x, p), p \in P\}$$
 (52)

Crespo (2016) considers for example:

$$I_{y}(x,P) = \left\{ y = p^{T} \phi(x), p \in P \right\}$$
(53)

p is a member of the hyper-rectangular uncertainty set:

$$P = \left\{ p : \underline{p} \le p \le \overline{p} \right\}$$
(54)

$$I_{y}(x,P) = [\underline{y}(x,\overline{p},\underline{p}),\overline{y}(x,\overline{p},\underline{p})]$$
(55)

How to train a type 1 IPM

$$\underline{y}(x,\overline{p},\underline{p}) = \overline{p}^{T} \left(\frac{\phi(x) - |\phi(x)|}{2} \right) + \underline{p}^{T} \left(\frac{\phi(x) + |\phi(x)|}{2} \right)$$
(56)

$$\bar{y}(x,\bar{p},\underline{p}) = \bar{p}^{T} \left(\frac{\phi(x) + |\phi(x)|}{2} \right) + \underline{p}^{T} \left(\frac{\phi(x) - |\phi(x)|}{2} \right)$$
(57)

- Can use polynomial or radial basis
- To find a good model attempt to minimise (expected value of):

$$\delta_{y}(x,\bar{p},\underline{p}) = (\bar{p}-\underline{p})^{T} |\phi(x)|$$
(58)

with the constraints that all data points to be fitted lie within these bounds and that the upper bound is greater than the lower bound

- i.e. we solve a linear optimisation program
- These constraints give a type 1 IPM

Outliers

- Two criterion are used to find outliers:
- We can find a CDF for the distance of each *p* from the centre of the uncertainty set and then identify a fraction λ_p of points which prevent the interval being further minimised
- We can find the fraction λ_e of points with the furthest squared distances from the LS fit
- Points satisfying both criterion can be disregarded as outliers then we can retrain with the new subset of points
- The analyst must make a sensible choice of λ_p and λ_e

Reliability

For reliability parameter ϵ and confidence parameter β satisfying

$$\binom{k+d-1}{k}\sum_{i=0}^{k+d-1}\binom{N}{i}\epsilon^{i}(1-\epsilon)^{N-i}\leq\beta,\qquad(59)$$

the confidence and reliability parameters of the IPM are bounded by

Theory

Metamodels Interval Predictor Models Random Predictor Models

Applications

History Matching Simple Function IC Fault Model

Random Predictor Models

► A function returning a random variable for each vector x ∈ X Crespo (2015) considers for example:

$$R_{y}(x,P) = \left\{ y = p^{T} \phi(x), p : F_{p}(p), p \in P \right\}$$
(61)

it can be shown that:

$$\underline{p} \le \mu \le \overline{p}$$
 $0 \le \nu \le (\mu - \underline{p}) \odot (\overline{p} - \mu)$ $-1 \le c \le 1$ (62)
 $C(\nu, c) \succeq 0$ (63)

 $\blacktriangleright \sigma$ surface connects all outputs τ standard deviations from μ

$$I_{\sigma}(x,\mu,-\tau,\nu) = [I(x,\mu,-\tau,\nu,c), I(x,\mu,\tau,\nu,c)]$$
(64)

$$\nu_{y}(x,\nu,c) = \phi(x)C(\nu,c)\phi(x)$$
(65)

$$\mu_{\mathbf{y}}(\mathbf{x},\mu) = \mu^{\mathsf{T}}\phi(\mathbf{x}) \tag{66}$$

Type 1 RPM - Optimisation program

$$I(x,\mu,\tau,\nu,c) = \mu^{T}\phi(x) + \tau\sqrt{\nu_{y}(x,\nu,c)}$$
(67)

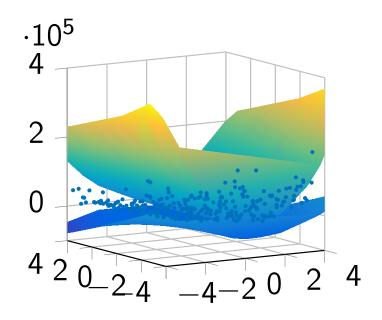
- σ_{max} is chosen by analyst to decide number of standard deviations from mean containing all data points.
- Reliability assessment from IPM applies to
 I_σ = [I(x_i, μ, -σ_{max}, ν, c), I(x_i, μ, σ_{max}, ν, c)] also.

 Similar outlier removal algorithm possible (distance from the second seco
- Similar outlier removal algorithm possible (distance from mean, normalised by variance).
- We can also use Type 2 RPMs (chance constrained formulation where constraint violation is allowed).

(68)

Implementation

- Implemented a class to construct IPMs/RPMs in generalized uncertainty quantification software OpenCOSSAN
- Training, Reliability evaluation, Outlier removal are all performed automatically in OOP framework, with choice of optimisers/basis type/additional constraints and more



Theory

Metamodels Interval Predictor Models Random Predictor Models

Applications

History Matching Simple Function IC Fault Model

Theory

Metamodels Interval Predictor Models Random Predictor Models

Applications

History Matching Simple Function IC Fault Model

What is History Matching?

- A type of model calibration
- If we have some real data and a model with some free parameters which we wish to tune to reproduce the data
- Many methods
- Bayesian Inversion is popular
- See Tarantola, Inverse Problem Theory or Carter, J. N. "Using Bayesian statistics to capture the effects of modelling errors in inverse problems."
- Usually use least squares objective function between data and model output - and a clever optimisation algorithm!

Theory

Metamodels Interval Predictor Models Random Predictor Models

Applications

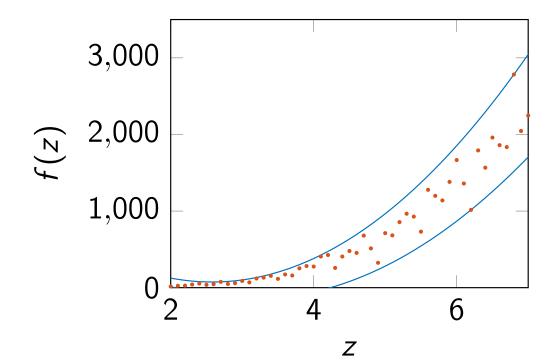
History Matching Simple Function IC Fault Model

Simple Example

As in Carter (2004), the following function will be taken as a black box

$$f(z) = (z^2 + 0.1z)^2 + \eta_1, \tag{69}$$

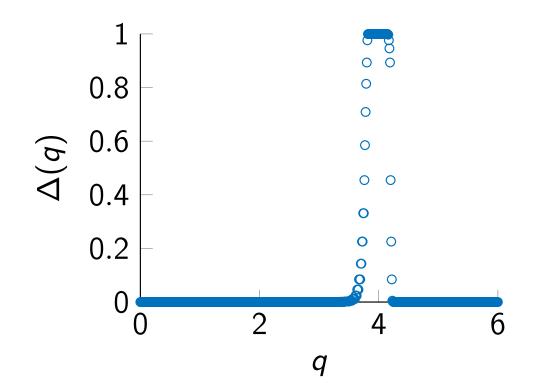
- Data provided is for z = 2 to z = 7 challenge is to predict z = 10
- ► The 'model' we have to match is $g(q, z) = z^q$



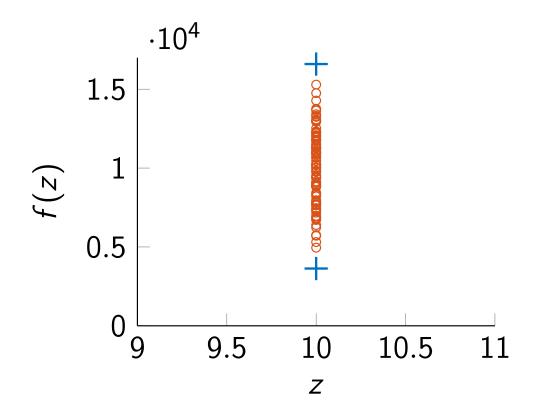
As you can see I fitted an IPM to the data. New objective function for simulations:

$$\Delta(q) = \sum_{i=0}^{C(q)} {D \choose i} R^{*i} (1 - R^*)^{D-i}, \qquad (70)$$

► Then find feasible q:



Which enables us to make predictions...



Theory

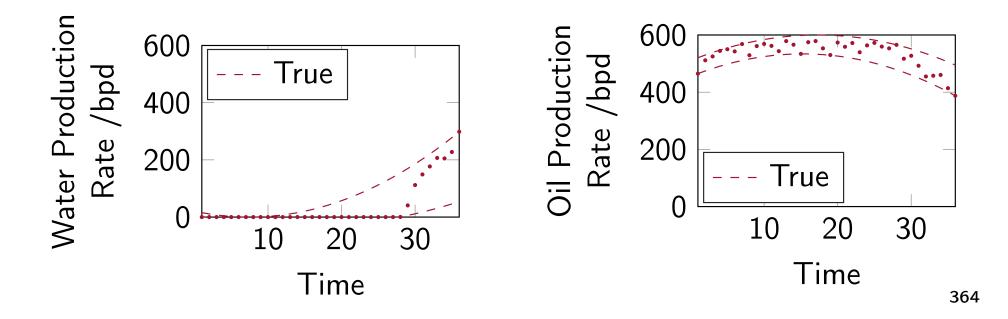
Metamodels Interval Predictor Models Random Predictor Models

Applications

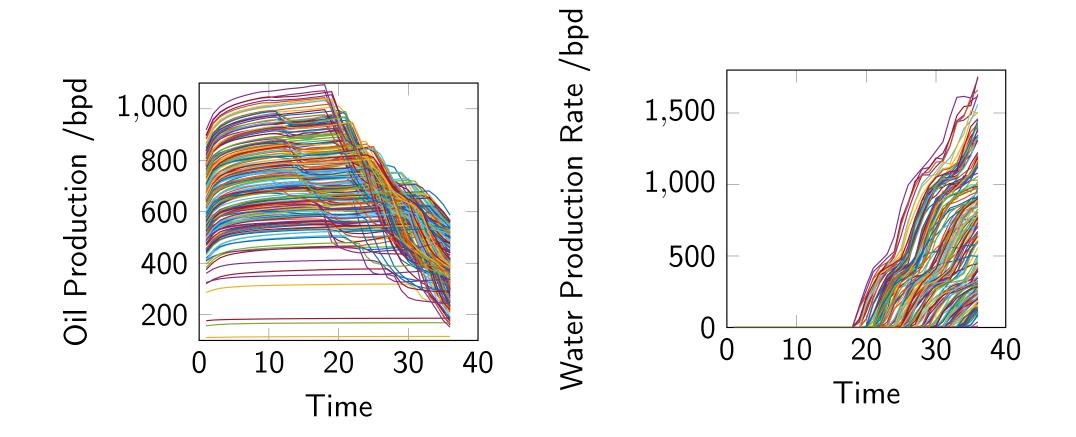
History Matching Simple Function IC Fault Model

Imperial College Fault Model

- Model of a reservoir which has been producing oil for 36 months and has now started producing water ('true' data was produced using a hetrogenous model with added noise (3%)).
- The challenge is to predict future production using a finite element model (homogenous)
- Good and low quality sand permeabilities and fault throw are unknown - to be determined by matching history data with the true data.
- \blacktriangleright Database with \sim 160000 simulation results available online

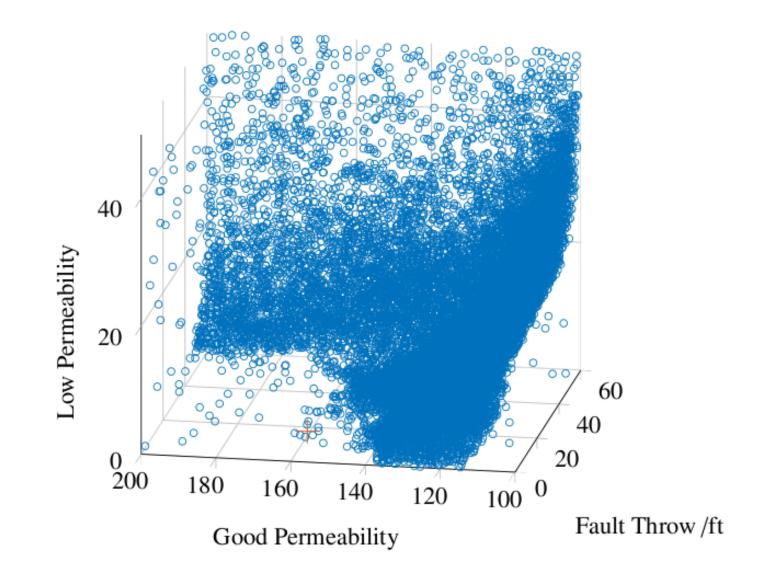


Simulations



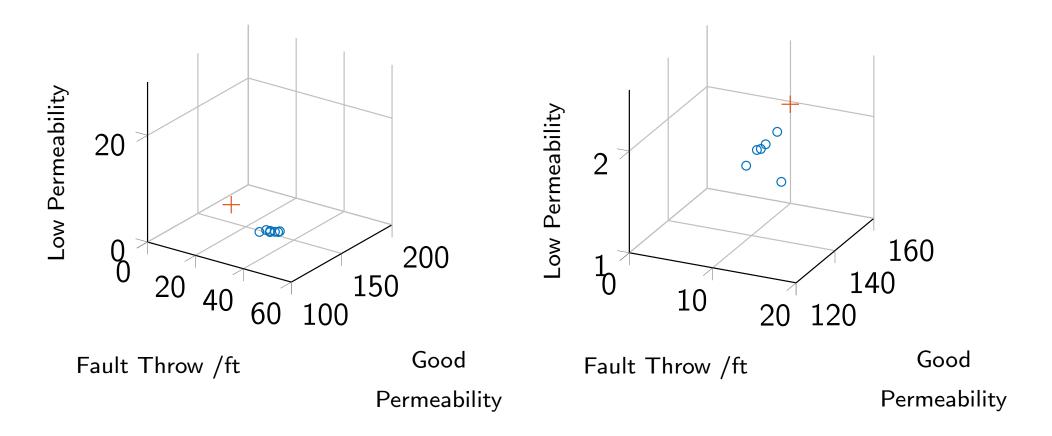
IC Fault

• Look for solutions with $\Delta(m) > 0.01$



Results

Simulations close to minima of the objective function:



Theory

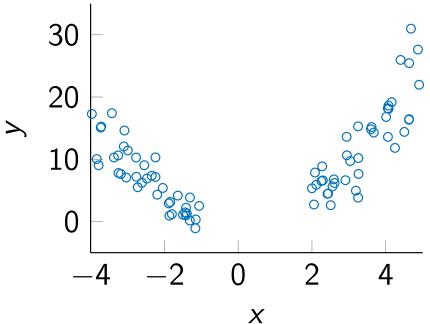
Metamodels Interval Predictor Models Random Predictor Models

Applications

History Matching Simple Function IC Fault Model

An example for you to try

- Please refer to your handouts
- Your friend at the University requires help with some data analysis.
- Use the programming language you prefer. I have provided instructions on a numerical method. I have prepared a solution in Matlab, and hence have provided some Matlab hints.
- Please give an interval for the value of y at x = 1 with a probability bound.



Questions?

- ► Thank you.
- Jonathan Sadeghi
- J.C.Sadeghi@liverpool.ac.uk